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Review by Stephen Parrott of
Collective Electrodynamics

by
Carver A. Mead

This is an unusual book and not an easy one to review. Perhaps the best starting
place is the publishers’ summary, on the back cover, of its intent:

“In this book Carver Mead offers a radically new approach to the
standard problems of electromagnetic theory. Motivated by the
belief that the goal of scientific research should be the simplifica-
tion and unification of knowledge, he describes a new way of doing
electrodynamics—collective electrodynamics—that does not rely on
Maxwell’s equations, but rather uses the quantum nature of matter
as its sole basis. Collective electrodynamics is a way of looking at
how electrons interact, based on experiments that tell us about the
electron directly. (As Mead points out, Maxwell had no access to
these experiments.)

The results Mead derives for standard electromagnetic problems are
identical to those found in any text. Collective electrodynamics re-
veals, however, that quantities that we usually think of as being very
different are, in fact, the same—that electromagnetic phenomena are
direct manifestations of quantum phenomena. Mead views this as
a first step toward reformulating quantum concepts in a clear and
comprehensive manner.”

It was this summary that persuaded me to order, sight unseen, this small (132
pages) but relatively inexpensive book to read on vacation. I didn’t expect a
lot from it, but I hoped that it might furnish some new insights. I was very
disappointed that I learned nothing of substance from it.

Indeed, I think that the above summary borders on false advertising. The
book does not convincingly obtain classical electrodynamics from accepted quan-
tum mechanical principles nor from experiments to which “Maxwell had no ac-
cess”. Its motivation is presented in such a vague and sloppy way that I regard
it as yet one more of the endless accumulation of dreary papers which Pauli,
in a famous remark, characterized as “not even wrong”, i.e., too vague to be
meaningful.

The book only sketchily describes the “experiments that tell us about the
electron directly”. These are experiments with superconducting coils, which re-
veal not the behavior of individual electrons, but behavior of a system of a large
number of electrons coupled in poorly understood ways (hence the “collective”
in the book’s title). Most of the book’s development is based on just one ex-
perimental fact—that the magnetic flux of a superconducting loop is quantized,
i.e., the flux can take on only values which are a constant multiple of positive
integers. The book views such a system as a primitive system “having only one
degree of freedom”.
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Before proceeding to sketch the book’s main argument, I have to make
some mathematical remarks. It is well known that classical electrodynamics
can be plausibly developed starting with just one mathematical object—the
four-potential A = Ai, i = 0, 1, 2, 3, which is a one-form on four-dimensional
Minkowski space. The electromagnetic field tensor F , a 2-form, is the differ-
ential of the potential 1-form: F = dA. It would take too long to give precise
definitions here, but they can be found in my book Relativistic Electrodynamics
and Differential Geometry and many other places.

The 4-current J is then defined as (or, from a more physical point of view,
assumed to be) the codifferential (covariant divergence) of the field tensor. This
mathematical structure is equivalent to Maxwell’s equations. Thus from any
physical situation in which a 1-form on Minkowski space appears naturally,
one can plausibly recover a good deal of the mathematical structure of classical
electrodynamics. For example, if within the logical structure of thermodynamics
there were a naturally occurring 1-form on Minkowski space, one might attempt
to “derive” electrodynamics from thermodynamics by identifying this “natural”
thermodynamic 1-form with the electromagnetic potential A.

However, there would remain more work to be done. The traditional mathe-
matical structure of classical electrodynamics requires that the four-potential A
be the retarded solution of d’Alembert’s equation (∂2/∂x2

0−
∑3
k=1 ∂

2/x2
k)Ai = Ji

with source J , which below we’ll call the “retardation condition”. This is an ad-
ditional constraint on A which might or might not be satisfied by the naturally
occurring thermodynamic 1-form which we would like to identify with the four-
potential A of electrodynamics. But if our naturally occurring 1-form should
be an unmeasurable quantity within thermodynamics, then this problem would
not exist. One might just assume that it satisfied this additional constraint,
and claim to have “derived” electrodynamics from thermodynamics.

When the logic is put together this way, it may sound somewhat silly. It’s
clear that little, if anything, would be accomplished by such a “derivation” of
electrodynamics from thermodynamics. It would be mainly smoke and mirrors.
But if the “derivation” were more obscurely written, it might appear possible
that something had been accomplished.

The essence of Mead’s argument is that the logical structure of quantum
mechanics furnishes a naturally occurring 1-form on three-dimensional space
with the property that its integral over any closed curve is an integer. The
space part ~A of the electromagnetic potential 1-form A has the property that
its integral over any superconducting loop gives the magnetic flux threading the
loop, which is observed to always be a constant multiple of an integer. This
suggests identifying Mead’s naturally occurring 1-form with ~A. Later, the full
electromagnetic potential A is obtained from ~A by hand-waving analogy.

His naturally occurring 1-form is assumed to have the property that inte-
grating it over a closed curve gives the change in phase of an “electron wave
function” (which he never properly defines) over the curve. Mead’s proposed
1-form from quantum mechanics seems inherently unmeasurable, i.e., there is
no way to determine it from experiment (or at least Mead doesn’t propose any).
Mead does not address the question of whether his “change in phase” 1-form
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satisfies the retardation condition above; he just seems to assume it. In my
opinion, the main problem with his argument is that his construction of his
“phase change” 1-form is so vague, sloppy, and problematic that it is “not even
wrong”.

I shall now attempt to summarize his construction. This is difficult because
Mead never properly defines his symbols, so one is never quite sure that one
understands what he is talking about. What I shall say is merely my best guess
as to the meaning of Mead’s vague exposition.

Part 1 of the book starts by describing the quantization of magnetic flux in
it’s third equation, (1.3). This equation is written in the engineering language
of voltage, but readers sufficiently familiar with electrodynamics to hope to read
the book will know how to translate it into a statement about quantization of
magnetic flux.

Next the book starts talking about the quantum wave function of a super-
conducting loop. There is no preliminary discussion of quantum mechanics to
establish notation and the author’s point of view regarding this often contro-
versial subject.

To give the reader a feel for the vagueness of the book’s exposition, I quote
the relevant parts of this short discussion. A reader who has the book in front
of him will recognize that I have omitted nothing which might sharpen the
vagueness of the discussion.

“Electrons in a superconductor are described by a wave function
that has an amplitude and a phase. The earliest treatment of the
wave nature of matter is the 1923 wave mechanics of de Broglie. He
applied the Einstein postulate (W = h̄ω) to the energy W of an
electron wave and identified the momentum ~p = h̄~k. . . .

“The Einstein-de Broglie relations apply to the collective electrons
in a superconductor. . . . A more detailed description of the wave
function of a large ensemble of electrons is given in the Appendix
(p. 115).”

The symbols ω and k, which appear here for the first time in the book, are
never defined, here or elsewhere. Is it obvious what ω and ~k might mean in the
present context of a superconducting loop? How would one measure ω and ~k
for a superconducting loop?

If we look ahead to p. 115 of the Appendix to find out what the author
means by the “wave function” of a superconducting loop, the first sentence is:

“In a solid, the most appropriate electronic states are traveling waves
described by a wave function ψ:

ψ = ei(ωt−k·r) ”

Again, the text does not define ω and k, and the author does not tell us why
states described by this wave function are “the most appropriate”. With an
exposition this vague, is it surprising that most anything could be “derived”?
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In case the reader imagines that he can guess the meaning of ω and k (e.g., k
is a constant vector and ω := |k|) and suspects that I am being overly pedantic in
my insistence that all symbols should be clearly defined, please reserve judgment
for a few paragraphs. We’ll see that the definitions are not at all obvious (and
in particular, the guess just made is probably wrong).

Returning to Part 1, p. 12, the book continues:

“The wave function must be continuous in space; at any given time,
we can follow the phase along a path from one end of the loop to the
other: The number of radians by which the phase advances as we
traverse the path is the phase accumulation φ around the loop. If
the phase at one end of the loop changes relative to that of the other
end, that change must be reflected in the total phase accumulation
around the loop. The frequency ω of the wave function at any
point in space is the rate at which the phase advances per unit of
time. If the frequency at one end of the loop (ω1) is the same as that
at the other end (ω2), the phase difference between the two ends will
remain constant, and the phase accumulation will not change with
time. If the frequency at one end of the loop is higher than that at
the other, the phase accumulation will increase with time, and that
change must be reflected in the rate at which phase accumulates with
the distance l along the path. The rate at which the phase around
the loop accumulates with time is the difference in frequency between
the two ends. The rate at which phase accumulates with distance
l is the component of the propagation vector ~k in the direction ~dl
along the path. Thus the total phase accumulated along the loop is

φ =
∫

(ω1 − ω2)dt =
∮
~k · ~dl ”

This last equation, the text’s (1.4), is the key equation by which the author
obtains the naturally occuring “phase-change” 1-form mentioned above, which
is later identified with the space part ~A of the electrodynamic potential 1-form
A. I’ll say more about this in a moment, but first let’s critically examine the
above equation (1.4) in the light of the text’s only explanation of the symbols
ω and ~k (all of which has been fully quoted above, so far as I am aware).

I mentioned earlier that the guess that ~k is a constant vector, which seemed
natural in the context of the Appendix, is probably the wrong guess. This is
because if ~k is constant, then the above integral,

∮
~k · ~dl around a closed loop,

obviously vanishes. But a few equations later, the text claims that

φ =
∮
~k · ~dl = 2πn ,

where n is an integer (which is not necessarily zero, as the context makes clear).
So, what does the symbol ~k represent in the above equation (1.4), which is

only the fourth and probably the most important equation in the book? Despite
considerable thought, I’m still puzzled about this.
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My best guess is that ~k may be intended to be a function ~k = ~k(~x) of position
~x, in which case ~k · ~dl would represent a 1-form whose integral over a closed curve
would not obviously vanish.1 The text may be assuming the existence of a 1-
form, which it denotes ~k · ~dl, whose line integral over any curve gives the phase
change of the system’s wave function over that curve.

But there is a serious problem with this “best guess”. If the wave function
is defined and nonzero on all of space, as is the above ψ = ei(ωt−kr) which
Mead seems to regard as the “most appropriate”, then so is its phase (up to an
everywhere constant multiple of 2π). Its phase is necessarily a (single-valued)
function (e.g., the phase of ψ at time 0 is −kr), and the change in a (single-
valued) function over a closed curve necessarily vanishes. So again, we have∮
~k · ~dl = 0 in contradiction to the text’s above-mentioned claim that

∮
~k · ~dl =

2πn with n not necessarily zero.
If the wave function can vanish or may be not be everywhere defined, the

situation could be different, but the text never discusses these possibilities. In
the absence of discussions of such important points, the book cannot be said to
have established anything.

Whatever meaning the author intended, he should have realized the need to
clearly communicate it to the reader. Since all of my guesses as to the meaning
of (1.4) have led to inconsistencies, in the absence of a better guess I have to
consider (1.4) as too vague to be meaningful, in Pauli’s famous words, “not even
wrong”. The whole book is like that.

To finish up, the ~k · ~dl above is engineering notation for a 1-form on three-
dimensional space. The text claims (effectively, not in so many words) that ~k · ~dl
is a 1-form on 3-space which has been naturally obtained from quantum mechan-
ics and which satisfies its key equation (1.4) above. In classical electrodynamics,
the three-potential ~A (here ~A is the space part of the four-potential A discussed
above) has the property that its integral around a closed loop,

∮
~A · ~dl, gives the

magnetic flux threading that loop. For a superconducting loop, that magnetic
flux is an integral multiple of a constant, similar to the text’s claim mentioned
above that

∮
~k · ~dl = 2πn. From this the text concludes (in different language)

that the supposedly naturally occurring 1-form ~k · ~dl must be a constant multiple
of the three-potential 1-form ~A · ~dl of classical electrodynamics. (Note that this
conclusion is actually an assumption.) Finally, by handwaving analogies the
text promotes the 1-form ~A · ~dl on 3-space to a 1-form A on four-dimensional
Minkowski space and eventually obtains standard classical electrodynamics in
the usual way outlined above.

Is there anything of interest in the book? Well, some may find of interest an
1In case this seems puzzling, recall that a 1-form f at point ~x ∈ R3 is a linear mapping

which assigns to each vector ~v in the tangent space at ~x (in engineering language, ~v is a
“bound” vector with “tail” at ~x), a real number f(~v). The 1-form which I am denoting (to

remain as close as possible to the text’s notation) ~k · ~dl assigns to a vector ~v as above, the

number ~k ·~v. When such a 1-form is integrated over a curve C, the result is, in the notation of
vector calculus,

∫
C
~k · ~dl. If C happens to be a closed curve, this result is commonly denoted∮

~k · ~dl, as in the text.
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11-page “Personal Preface” describing, among other things, the author’s rela-
tionship with and impressions of Richard Feynman. Mead was an undergraduate
student of Feynman and later his colleague at Caltech.

I have mixed feelings about these. His reminiscences sound sincere, but
also seem to me to have a flavor of name-dropping. For example, he discusses
a “sticking point” in his development of electrodynamics which held him up
for years, and informs us that “it is resolved in this treatment in a way that
Feynman would have liked”. It seems presumptuous to claim to know what a
great, deceased physicist would have thought about this work.

I suggest that anyone contemplating buying this book first check it out of a
library and try to read the pages quoted above (pp. 9-14) in detail. If they seem
clear to you in the light of the above analysis, then you can reasonably conclude
that I didn’t understand the author’s arguments and discount this review.

• July 23, 2006: This is the second posted version of this file. The first ver-
sion, posted yesterday, July 22, 2006, contained some minor errors, which
are corrected in this version. The errors did not affect the conclusions.

• July 26, 2006: A minor typo (“magnetic field” changed to “magnetic flux”)
was corrected.

• October 25, 2006: I just discovered that the text of Part 1 of the book
seems nearly identical to the author’s paper

Mead, C. A. , Collective Electrodynamics I, Proc. Natl. Acad.
Sci. USA (PNAS) 94 (1997), pp. 6013-6018.

In particular, the book’s first few pages from which most of the review’s
quotes are drawn also appear seemingly verbatim in the paper. (I haven’t
performed a word by word comparison, but they look identical.)

The book’s “Personal Preface” states that Part 1 of the book is “an ex-
panded version” of the above paper, but I haven’t noticed any text in
Part 1 which doesn’t appear verbatim in the paper. The main difference
seems to be that the book contains some helpful drawings (mainly repre-
sentations of superconducting coils) which the paper lacks. This paper is
available in full on the PNAS web site www.pnas.org (search for Mead,
Carver), so anyone interested in evaluating the review’s analysis can ob-
tain the original text from this source without obtaining the book.

The paper states that it “is the first in a series”, as its title would suggest.
My search engines have not located subsequent published papers in this
intended series.

This review is copyrighted c©. For more information, see the copyright page,
www.math.edu/∼sp/copyright


