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Context

G split, connected, linear algebraic reductive group over p-adic F.
Choose Z, an lwahori subgroup of G.

Affine lwahori-Hecke algebra H = H(Z\ G /Z) under convolution
has * operation f*(x) = f(x1).

Theorem (Borel, 1976, and Casselman)

V — V7 defines a category equivalence

C(T) = {Iwahori-spherical reps} < C(H) = {finite dim reps of H}
Theorem (Barbasch-Moy, 1989, 1993)

V € C(Z) is unitary if and only if VI € C(H) is unitary.

Theorem (Lusztig, 1989)

There is a filtration on H giving rise to a graded Hecke algebra, H.
Isomorphism between completions relates representations.



Context

Full unitary dual known for p-adic groups GL(n) [Tadic, 1986], G,
[Muic, 1997]
Spherical unitary dual has been determined for

» classical p-adic groups (types B, C, and D) via their graded
Hecke algebra [Barbasch-Moy, 1996]

» split real and p-adic groups of type Sp(n) and SO(n)
[Barbasch, 2010]

» graded Hecke algebras of type B/C with unequal parameters
[Barbasch-Ciubotaru, 2005]

» split p-adic groups of type F4 and type E (generic dual)
[Ciubotaru, 2005; Barbasch-Ciubotaru, 2009] and

» geometric graded Hecke algebras with unequal parameters
[Ciubotaru, 2008]

I-M involution = determines Whittaker-generic dual.



Noncrystallographic real reflection groups

l(n) = dihedral group of 2n symmetries of the regular n-gon

= Coxeter group (s, | s? = (s1%)"=1) ©°1 02

H; = 120 symmetries of the icosahedron or dodecahedron

= Coxeter group (s1, %2, S3 | s,-2 = (519)° = (5253)° = (s183)2 = 1)

with diagram o1
~ Alts X Z

02 o3

Hy = 14,400 symmetries of the 120-cell or 600-cell
= (s1,52,53,54 | same plus s7 = (s354)° = (5154)% = (5254)> = 1)

with diagram o;_ % o, 03 o4




Why study noncrystallographic cases?

» No associated Lie group, p-adic group or geometry, but
representation theory of noncrystallographic H is both similar
and intriguingly different from crystallographic cases.

1. nonspherical tempered rep in H(H3) [K, 1999],
reps semisimple for abelian subalgebra [K-Ram, 2002]
2. solvable points and spin representations [Chan, 2012]

» Algebras related to complex reflection groups.
[Ram-Shepler, 2003], [Etingof-Ginzburg, 2002], [Chmutova, 2006],
[Balagovi¢-Puranik, 2010], [Etingof-Stoica,Griffeth, 2009]
» Other mysterious considerations.
1. associahedra and noncrossing and nonnesting partitions
[Armstrong, 2009], [Brady-Watt, 2008], [Chen-K, 2007]
2. critical pts of function on manifold, sing bdry [Lyashko, 1982],
wavefront singularities from obstacles [Scherbaks, 1982-2003]
3. does 3 topological object with moment graph as linear graph
from noncrystallographic reflection group? [MacPherson, 2004]



Root system and associated hyperplanes

Root system (h%, R, hr, RY) not assumed to be crystallographic.
Choice of simple roots 1 = {aq,...,an}
Fix ¢ : R — R with ¢, = ¢g if § = « and write c(¢;) as ¢;.
HY = {x € b} | x(of) =0}, 1 < i < n (reflecting)
HS = {x € by | x(off) = ci}, 1 < i < n (affine)

C = closure of fundamental chamber

>
>

>

» C is divided into cells of dimension 0,1,...,n by {HS -,

» Z(x) = {aj | x(a)) = 0} - which reflecting planes contain x,
» P(x) = {aj| x(a)) = ¢;} - which affine planes contain x

>

can use Z(x) and P(x) to characterize the 0-dim cells.

Theorem (Chen-K, 2007)

Ideals (equivalently antichains) in poset of positive roots under the
root order characterize 2-dim cells for l(n) and 3-dim cells for Hs.



Dominant regions and positive root order posets for ,(6)
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Graded Hecke algebra H

» W acts on complexification ht. = C ®p bp.
» W acts on symmetric algebra S(h¢) = polynomials on bc.
» CW = { > awtw | aw € (C} with multiplication as in W.

weWw
» Fix indeterminate r and recall c: R — R.

Graded Hecke algebra is H = C[r] ® CW ® S(bf)
with multiplication as in S(h%) and in CW and

xts; = ts;5i(x) + reix(a)) for x € b

Specialize r = 1.



Tempered representations of H

Center Z(H) = S(h%)" = W-invariant polynomials on hc.
Z(H) acts on irr H-module V by central character v € hc (Wr).
Consider only real central character v € hr.

Goal: Describe the real support of generic unitary reps of H.
Any irreducible H-module V' has generalized weight space

decomposition
_ gen
V= @ Vw )
v€bC

where v is a weight of V if V3" #£0.

H-module V is tempered (discrete series) if for all weights v € b
of V and all fundamental weights w; € b, wi(y) < 0 (wi(y) <0).



Unitary representations of H

x-operation defined on H by
th=t,1, X =—ty(WoX)tw, = X+ Y _ X(a")cats,,
for w € W and x € bg.
H-module V' is Hermitian if there is nondegenerate form such that
(hvi, vo) = (v1, h*v2), forallheH, vi,vr € V,

and V is unitary if ( , ) is also positive definite.
An invariant Hermitian form on V is equivalent to an H-module
isomorphism from V to its Hermitian dual, vh




Langlands classification for H

Fix subset Iy, of simple roots and generate root system Ry,.

H has subalgebra Hp = Hp, @ S(t*) < (b, Rum) where
HM — ((C<nm>, RM), and define

0

t={vehc|av)=0forall acly}
tt = {v et| Re(a(v)) > 0 for all a € M\ My}

For an Hy-module U let I(M, U) = H ®y,, U.

Theorem (Langlands Classification - Evens, 1996)
1. Every irr H-module is a quotient of a standard module
X(M,o,v) =1(M,0 @ C,), o a tempered Hp,-mod, v € t*.

2. X(M,o,v) has unique irr (Langlands) quotient L(M, o, v).
3. L(M,o,v) is unique up to conjugacy of (M, o,v).




Intertwining operator generalities

Restrict to generic representations V/, i.e., Homy/ (V/,sgn) # 0.

Writing wo = s;;, - - - 5, induces the ordering

SI'[ TS Ay sy Sigai[,;[? iy,

For each v € b, define the following element of R[W]:

1 1
Alv) = <1 + C—'<V7 Sip - 5i2ax>5i1) e <1 + _,<V> O‘z>5iz>

n g
» A(v) is independent of choice of reduced expression for wy.
» A(v) is invertible if and only if (v, 3) # *cs for all 5 € RT.

A

> If wor = —v, then p(A(v)) is Hermitian for all unitary p € W.



Intertwining operator, cont'd.

Define the principal series module X(v) = H ®@s(hz) C, for v € bR.
If v € C then X(v) has a unique irreducible quotient L(~), which
is generic, and any generic H-module appears in this way.
L(v) is Hermitian if and only if wor = —v.
» A(v) is an intertwining operator from X(v) to X(—v) with
image L(v) if wov = —v.
» L(v) is unitary if and only if p(A(v)) is positive semi-definite
forall pe W.
» The signature of p(A(v)) is constant on cells.



Root system of type h(n)

Set = T, {e1,e>} standard orthonormal basis for by.
R :={ Bk = (cos(k —1)0)e; + (sin(k —1)0)ex | 1 < k <2n}

Choose M:={a1=p01,a00=0,} Rt ={Bc|1<k<n}

P s A
% 2 o %
e R &
5 e s Bro
i b CH

I (5) 1>(6)



Intertwining operator for L(2m + 1)

For W=h(2m+1), wo = sm---Ss15 - - Sy induces the ordering

{OQ = 62m+17ﬂ2m7 e 7ﬂ27/81 = Cl]_} if mis even, and
{Oé]_ — /817ﬂ27 o 7/82m7ﬂ2m+1 — a2} if mis odd.

Since wo = (Sm - - $2)s1(Sm - 5) "t = S(sm-52)(01) = SBns1s

Vo' ={v €bi | wor = =} NC = {0} U {}Bms1 | t e R7O}

= points along the central ray of C.
For v=10ms+1 € Vo' (v, Bm 1) = (V. BY1), hence

AW) = (14 28 )sm) -+ (14 2 Bnar)sr) -+ (14 (3 )5



p"(A(v)) for hL(2m + 1)

For 0 < h<m, let

o | cos(hB) sin(h6)
AL = p'(s1) = [ sin(hf) — cos(hf) ]

. cos(hf) —sin(h0)
A3 = pl(e2) = [ —sin(hf) — cos(h6) } '

Then p° = p* @ p~ and W = {p*,p™,p",...,p"}.
Since

(Bma1,BY) = 2cos((m — k + 1)), use c; = 2 so

2" (A (28ms1)) = -+ - (¢l +cos OAD) (¢ + A7)(t] +cos O AT) - --
p" (A (3Bms1)) psd < pP(A(t)) := t?™+1ph (A (1Bmy1)) psd



The generic unitary dual for H(L(2m + 1))
Theorem (Chen-K)

For H(h(2m + 1)) the v in V& that support generic unitary reps
arev =0, andv = %ﬂmﬂ fort > 1, t=coskf fork=1,...,m.

Figure: Dominant support of the generic unitary dual for ,(5) and h(7)




Proof - nondistinguished points

If t <1andt##coskf for 1 < k < m then
p=(A(t)) = (t = 1) ] (t — cos(k))* < 0
k=1

and v = %ﬂmﬂ is nonunitary.
v = 0 is unitary since Vp, p(A(0)) = [ is positive semidefinite.
V= %ﬂmﬂ for t > 1 is unitary because

p(A(t) = (t£1) lm_[(t + cos(k))? > 0
k=1

and My = tl + Al with eigenvalues t 4+ 1 is psd so for all p”

P (A1) = (VMoMy ... M)  (\/MoMy ... M) s psd.



Proof - distinguished points

Vg = %ﬁm+1 for t = cos k), k = 1,..., m are unitary by

Theorem (Ciubotaru-Opdam-Trapa, 2012)

If H a graded Hecke algebra, L a discrete series rep of H with
X = character of L|cw, and

<L7 L>e” = Z(_l)I<X7X b2y /\inef>W = ]-7
i>0

then L is unitary.
Apply to discrete series L. x41, 0 < k < n—1, at distinguished v,

ko
with character on CW of xx = x4+ > ¥/ [K-Ram, 2002].
j=1



Proof - distinguished points - elliptic product

In h(n), X =x*, AP =x", Alxt=xt AR =x,
andfor1 <;j<n-—1,

Xj & xi = Xj and

Y oxt =+ (recall X0 = xT 4+ x7).

k.
By orthogonality, with xx = xT + >}/ for 0 < k<n-—1,
j=1
(Xk7Xk b2 /\OX1> = <Xk7Xk> =k+ 17
@At = (xR e xt) = 2k,
oK@t = (xR e xT) =k,

so (Lck+1, Lc,k+1>e” =k+1-2k+k=1= Lcyy1 isunitary. [



Elementary path to unitarity at distinguished points

Set t = cos(kf) and let

Mo = cos(k6)I + cos(2j6) AT
Maj 1 = cos(k0)! + cos((2j + 1)0)AS.

det(My) = 0 = det(p"(A(t))) = 0 and remaining M; nonsingular.
Truncate p/(A(t)) at M. Find nonzero v in Im((MoMy - - - )My).

Conjecture

P .= eier cee M2M1MOM1M2 s Mkel

= 22k cos? (1) Hcos (o) cos((h+2j 1) 9) cos((h—%) 9)

Conj = P > 0: cos((hj: %) 9) < 0 = some cos((h+ 251)6) =0



Unitarity at distinguished points - reduction

p L 92k+1 o2 % Hcos (jO) cos((h_|_ 2j— 1) 0)cos<( —%) 9)

j=1

If k is even, Me; = 2cos (g@) cos(kf)vs.
If k is odd, Mye; = 2cos (26) cos(kB)[cos(hd)vi + sin(hd)vs).
So for 0 </ < k — 1, define a; and b; by

1
ajvi + bivo = My_;--- Mkh—el
2cos<§6'> cos(k0)

Mo(ak—1v1 + bx_1v2) = 2 cos? (kH) ak_1vi — 2sin® ( 9) bx_1vo,
= P = 2%cos® (80) cos®(k0)) [a;_, cos® (56) — by_y sin” (£6)] .

Reduce to

k—1 k
ai-1 <05 (£0) by sin (£0) £ 24 T cos(jo) [ cos (= (~1y 71 252) .
j=1 j=1



Unitarity at distinguished points - recurrences

k—1 K
ak—1cos (50)L£by_1sin (£6) L ok-1 H cos(j6) HCOS (h + (_1)j+12j2;1) 0.
j=1 J=1

Step 1 Find formulas for a,_1 and bg_1. Done.
Step 2 Reduce result to product. Done for k < 4.
Step 1 Define a; and b; by

1

ajv +b,’V :M_,'"'M
! 2 g “2cos (20) cos(k0)

€1,

If Kk —1iis even,
a; = [cos(kO) + cos((k — i)0)]ai_1
b; = [cos(k8) — cos((k — i)0)]bi—1
If kK —iis odd,
aj = [cos(k0) + cos((k — i)0 cos(2hf)]a; 1 — cos((k — )f) sin(2h0)bi
bi = [cos(kf) — cos((k — i) cos(2h0)]bi—1 — cos((k — i)0) sin(2h0)a; 1.



Unitarity at distinguished points - formula for a;, b; if k odd

Proposition
If k is odd,

ag if nis even,

EY) Z( )" [sin(2h0)]" My .. ’"){bo i is odd, where

(11y--eyin)
C(t,..1)
My ,....in) = [cos(kB) + cos((k — 2£)0) cos(2h6)][cos(kb) + cos((r — (2¢ — 1))6)]
-+ cos((k — 2i1)0)[cos(kB) — cos((r — (24 — 1))0)]
[cos(k@) — cos((k — 2(ir — 1))8) cos(2h8)][cos(kO) — cos((r — (2ir — 3))0)]
-+~ cos((k — 2i)0)[cos(kO) + cos((r — (22 — 1))0)]
[cos(kB) + cos((k — 2(i2 — 1))0) cos(2h0)][cos(kO) + cos((r — (212 — 3))0)]
-+ [cos(kB) + (—1)" cos(k — 1)6)],

Interchange +, ag/bg to obtain byy. Recurrences yield azpy1, bopi1.



Unitarity at distinguished points - a;, b; when k even

Proposition
If k is even,

ag if nis even,

—_ nr.: nry/
ay = Z'(—l) [sin(2h0)] I'I(,-1 ..... i) {bo i is odd. where

NG,y = [cos(kO) + cos((r — (2¢ — 1))0) cos(2h0)][cos(kO) + cos((k — 2£)6)]

-+ -cos((k — 2i1)0)[cos(kB) + cos((k — 2i1)0)]
[cos(k@) — cos((r — (2iL — 3))8) cos(2h8)][cos(kO) — cos((k — 2(ir — 1))6)]
(k0)
(k0)

-+ -cos((k — 2i)0)[cos(kO) — cos((k — 2i2)0)]
[cos(kB) + cos((r — (2i2 — 3))0) cos(2h0)][cos(kO) + cos((k — 2(i — 1))0)]

Interchange +, ag/bg to obtain byy. Recurrences yield azpy1, bopi1.



Eigenvalues of p"(A(t))

Claim eigenvalues of p"(A(t)) in basis yielding Af, A5 are:

AF(t H [t & cos(k + h)d]
k=—m
m—h m
=(t+1) H(ticos(j@))2 H (t* — cos®(j0)).
1 j=m—h+1

True when h = 0, since
1 0 1
P°(s1) = [ 0 1 ] and  p%(s2) = [ 0 —1 ] -

[ (e + DT (t + cos k8)? 0
P(A(t)) = { “0 (t — 1) [T, (t — cos kB)? } '



Eigenvalues of p"(A(t))
Know )\hi(t) are polynomials of degree 2m + 1 in t and divide

m

det[p” (A(t)] = (¢ — 1) [ [ (£* — cos®(j6))>.

j=1

Find zeroes at distinguished points.
Since p(A(v)) is the restriction of the hermitian form to the

p-isotypic component, /(v), of I(v), using 7 : I(v) - L(v) yields
dimker 7.y, = dim p - z(p(A(v))),

where z(p(A(v))) = # zero eigenvalues of p(A(v)).
By [K-Ram,2002]

2(m — k) +1=dimL., =2(2m +1) Zdlmp 2(p(A())).
pEW



Eigenvalues of p"(A(t))

2(m—k)+1=dimLe=202m~+1) = ) dimp- z(p(A(v)))
pEW

For all 0 < k < n, z(pf (A(v))) = 0 and z(p7 (A(vk))) = 1, so

= Z A(vk))), which implies for 1 < h < m,

z(p"(A(v))) 2(p"(A(vm))) =2, 2(p"(A(v))) =

=1lo
Since ker m @ L k

r2,
~CW,
2(p"(A(wi))) = 2(p"(A(vk-1))) for all h # k,
2(p"(A(w))) = 2 and z(p*(A(vk-1))) = 1.



Signatures of p"(A(t)) at distinguished points

t Liew h= 0 1 2 m—2 m—1 m
cos mf pT 0,+ 0,0 0,0 0,0 0,0 0,0
cos(m—1)0 pt@p! 0,+ 0,+ 0,0 0,0 0,0 0,0
2 .
cos(m—2)0 ptre@p 0,+ 0,+ 0,+ 0,0 0,0 0,0
j=1
. m—2
cos 26 ptea @y 0,+ 0,+ 0,+ 0,+ 0,0 0,0
j=1
m—1
cosd pte @y 0,+ 0,+ 0,+ 0,+ 0,+ 0,0
j=1
0,+ 0,+ 0,4+ 0,+ 0,4+ 0,4+

1 p+@691pj
=



Eigenvalues of p"(A(t))

Pattern of signatures yields:

m

[T (t—cos(j#)) divides Af (t),
j=m—h+1
m—h m
(t—1) H (t — cos(j6))? H (t — cos(jf)) divides A\, (t)
j=1 j=m—h+1

Repeating for t = — cos(kf) and using the lwahori-Matsumoto
involution (IM(t,,) = (—1)""t,,. IM(w) = —w) which preserves
unitarity yields

AE(t H [t + cos(k + h)6]
k=—m
m—h m
(t+1) JJ(t£cos(j0))> ] (£ — cos?(j6)).

j=1 Jj=m—h+1



Positive roots, actions of s;, and the root order for Hs

@ @ «
'~ -5 : 1+5
>~ 7 53 where for 7 = =522,
s > 5
-~ - > ~
- ~
Qg as _ a6 Q. =1+ TO2
3 ) B8~ a5 =TOo1+ Q2
S1 S1
> ag = a2+ TO3
-
- —
ar’ . Qs > g a7 =TO1+ TOz
~_ - ag =1+ Ta2+ 703
53 - - B Qg =TOo1+ o2+ a3
A=~ - = ~ g Qo =701+ Ton + Tas
a1 =T1ar+ (T+1az+ as
5 2 5 a2 =711+ (7+ 1o +Ta3
ais = (T+ 1o+ (7+ 1w+ a3
12 Q13 _
aie = (7+ 1o+ (7 + 1) + 703
! / ons = (74 1)on + 2702 + T3
3
Q14
2
5



Ideals in the positive root poset or 3-dim cells for H;
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Reflecting walls of C for H;




Intertwining operator for H;

For W = Hs, the choice wy = (s152515253)% induces the ordering
{a1, a5, a7, a4, a13, a2, 11, 15, 14, 12, 9, 110, g, O, A3}
For each v € VOJr = C,
Av)= 1+ (v,af)s1) (1+ (v,a8)s) - (1+ (v, )s2) (1 + (v, 05 )s3)

Use W-graphs to obtain irreducible matrix representations

pf,pf,ﬁgt,pjf,pét that are conjugate to unitary matrices.



Techniques - computational in Maple

1. Understand geometry of cells in C

a. Solve all systems and select dominant vertices.
Used Cramer's rule and symbolic simplification.

b. Used product of incidence-type matrices to match vertices to
3-dim cells.

c. Used incidence matrix for vertices of each 3-dim cell to detect
1-dim and 2-dim boundary cells.

2. Analyzed signs of eigenvalues for each p(A(v)) where
v is a vertex or average of vertices (use continuity of p(A(v)))
a. Found p(A(v)) and characteristic polynomial x,,, over Q[v/5]
b. Analyzed signs of coefficients in x,,, by exact arithmetic.

c. Descartes’ Rule of Signs detected/ruled out eigenvalues < 0.



The support of the generic unitary dual for H(Hs)

» Three 3-dim cells (v = viwy + vowy + v3wy)

lh s 0L<(r+Dwni+21n+7113<1

ha s 1<(r+Dvi+ (74 Do+ 73,
0<(t+ i+ (T+ D+ <1,
0<tn+(r+Lr+713<1

ho is 1<7tvi+ T2+ TULS,
0<vi+71n+7113<1,

0<(t+1ni+(T+Dm+rs3<1
» Four 1-dim cells, 0 < a < 1.
v=(1-a)(r—-1), vy = a(21 — 3), v3=a2—7)
m=a3-27r)+7-1, wn=a2r —3), vz = a(—37 +5)
vi=a(2-7), m=alr—2)+7—-1, v3=a(-37+05)
n=02-7)(1-a), m=02-7)(1+7a), wv3=Q2-7)(1-a)

» Two isolated vertices: v; = (2—7,2—7,1) and v; =(1,1,1).



The support of the generic unitary dual for H(Hs)

Indy1,(5) T
3
60-dim



/2(2/77)

Two distinct parameters, c¢1, ¢ - one for each orbit of roots and
n? 4+ n+ 3 distinct cases for a/c.
Since wy = (s152)™ is rotation by T,

Vo ={vebr|wrv=-v}nC=C.

{2-dim regions in b \ (U7 HS., HS )} < {ideals in (R, <)}
Build poset (Z, C) of ideals. Label edges |—>—1U {a}.

Conjecture

Support of the unitary 0-complementary series for H(h(2m)) is
UyR; where | can be reached in the poset of ideals by a path of
even length with same labeled edges, starting from (), i.e., starting
in Ry, cross evenly many Hgi in same orbit as move along ray in C.



Dominant regions and positive root order posets for ,(6)

1677
HBs-l
6
1
25
Hpg1
Hp,1
Hﬁ3v1
H
H Hp,1 Bal
Bul > Hp,1 Hpyt
1 6 1 6 1 6 1 6 1 6
) 5 2 5 2 5 5 5
3 3 3 3
3 4 4
2
4 2
2 4
NG 2 2 2
7<r<ﬁ (r=1 r:ﬁ ﬁ<r<ﬁ r=/3 S<r



