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Notation

g real simple Lie algebra, Cartan involution θ.

Cartan decomposition: g = k⊕ p

Complexifications: gC , kC and pC

GC is a connected linear group with Lie algebra gC .

G , K , and KC conn. subgrps corr. to g, k and kC .

Group actions: GC on gC , G on g, KC on pC
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Basic definitions

Definition

ad(x)(z) := [x , z ], x , z ∈ gC .

x is nilpotent (resp., semi-simple) if ad(x) : gC → gC is nilpotent
(resp., semi-simple)

If x is semi-simple, gC(x ; j) = the j-eigenspace of ad(x).

pC(x ; j) and kC(x ; j) are defined similarly for x ∈ kC and semi-simple.

Definition

The non-zero elements A, B, C in a real Lie algebra are said to form an
sl(2)-triple if [B, C ] = A, [A, B] = 2B, and [A, C ] = −2C . A is called
the neutral element of the triple.

Donald R. King (NU) Spherical nilpotent orbits CBMS 7.16.12 4 / 44



Some sl(2)-triples{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
and{[

0 i
−i 0

]
,

1

2

[
1 −i
−i −1

]
,

1

2

[
1 i
i −1

]}
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Nilpotent orbits and their classification

Consider the following sets of nilpotents: N(gC), N(g), and N(pC).

and corresponding sets of orbits: N(gC)/GC , N(g)/G , and N(pC)/KC .

1 N(gC)/GC ↔ GC-conjugacy classes of sl(2, C) subalgebras of gC

2 N(g)/G ↔ G-conjugacy classes of sl(2)-triples {H, E , F} in g

3 N(pC)/KC ↔
KC-conjugacy classes of sl(2)-triples {x , e, f } (with e, f ∈ pC)
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Co-ordinate rings of nilpotent orbits in N(p
C
)

O = KC · e is a quasi-affine variety in pC .

O := the Zariski closure of O in pC .

If f ∈ R[O], k ∈ KC the group action is (k · f )(z) = f (k−1 · z), for
z ∈ O.

R[O], R[O], and R[On
] are completely reducible KC-modules, e.g.,

R[O] =
∑
µ∈bK

mO(µ)Vµ, where mO(µ) < ∞

Definition

O is spherical if mO(µ) = 0 or 1 ∀µ ∈ K̂ .
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Example

g = sl(3, R), KC = SO(3, C)

O = minimal orbit ↔ 2 + 1 ↔

1 i 0
i −1 0
0 0 0



R[O] = R[O] = R[On
] '

∞∑
j=0

H2j .

∀ non-negative integer n, Hn = unique irr. repn. of SO(3, C) s.t.
dim Hn = 2n + 1.

Hn = C-span of the real valued harmonic polynomials of degree n in 3
variables.
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Spherical nilpotent orbits

Proposition

O is spherical for KC ⇐⇒ a Borel subgroup of KC has a dense orbit in O.

It follows that the varieties O, O, and On
are each spherical or none are

spherical.

([McGovern, 1994] and [Panyushev, 1994]

Classification of spherical nilpotent G -orbits for g simple and complex.

Panyushev’s criterion:

O = G · e is spherical ⇐⇒ height(e) = 2 or 3

where “height(e)” = largest eigenvalue of a neutral element for O
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Spherical nilpotent orbits in N(p
C
)/K

C

OC spherical for GC ⇒ each KC-orbit in OC ∩ pC is spherical for KC .

[K, 2004]

Classification of spherical nilpotent KC-orbits in pC , when g simple and real.

What can spherical nilpotent orbits tell us about Harish Chandra
modules?

A lot of information is contained in R[O]

From now on assume that O has height two.
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Facts about R[O] for small spherical orbits

Proposition

Fix t ⊂ k, tC = t⊗R C, a Borel subalgebra bC = tC ⊕ nC ⊂ kC .

1 O is normal.

2 R[O]nC = C[u1, . . . , ur ]; each ui is homogeneous of weight γi .

3 ∃ a subspace W ⊂ pC that is KC-conjugate to either pC(x ; 2) or
pC(x ;−2) such that ∀ i , ui ∈ S(W ).
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Discussion

The proof uses ideas of Hesselink and Panyushev applied to the
standard desingularisation of O.

Same result holds in a slightly more general context (e.g., the
principal nilpotent orbit of su(2, 1)).

Similar and related results have been proven for many of these orbits
by many other authors including Binegar, and jointly by the
Nishiyama, Ochiai, and Zhu.
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An application to Harish Chandra modules

Keep the notation from the preceding proposition and in addition:

Γ(O) := the monoid in it∗ of K -types in R[O]

C(O) = R+Γ(O) := the span of Γ(O) over R+

Theorem

Assume that X is an irreducible (gC , K )-module and the associated
variety of X equals O. Then, the asymptotic directions of the K-types of
X are the same as those of the cone C(O).

Knapp, Trapa and many other authors have noticed this behavior.
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Definition

Let σ1 = σ(u1), . . . , σr = σ(ur ) be the images of the ui in U(gC) under
symmetrization.

Key idea of proof: σ1, . . . , σr act injectively on X because W satisfies a
certain technical condition studied by Gyoja and Yamashita.

Example

g = sl(4, R) k = so(4) = so(3)⊕ so(3)

positive roots for k: {ε1 − ε2, ε1 + ε2}

K -type (m, n) = Cm+1 ⊗ Cn+1

X = S [−2, (1, 1)], the Speh representation of SL(4, R) with
Knapp-Vogan parameter m = −2, lowest K -type (1, 1).

Donald R. King (NU) Spherical nilpotent orbits CBMS 7.16.12 14 / 44



Definition

Let σ1 = σ(u1), . . . , σr = σ(ur ) be the images of the ui in U(gC) under
symmetrization.

Key idea of proof: σ1, . . . , σr act injectively on X because W satisfies a
certain technical condition studied by Gyoja and Yamashita.

Example

g = sl(4, R) k = so(4) = so(3)⊕ so(3)

positive roots for k: {ε1 − ε2, ε1 + ε2}

K -type (m, n) = Cm+1 ⊗ Cn+1

X = S [−2, (1, 1)], the Speh representation of SL(4, R) with
Knapp-Vogan parameter m = −2, lowest K -type (1, 1).

Donald R. King (NU) Spherical nilpotent orbits CBMS 7.16.12 14 / 44



Example

(Continued) Associated variety of S [−2, (1, 1)] = O,

where O ↔


1 −i 0 0
−i −1 0 0
0 0 1 −i
0 0 −i −1

.

O has height two.

R[O]nC = C[u1, u2]

u1 has degree 1 and weight: 2

(
ε1 − ε2

2

)
+ 2

(
ε1 + ε2

2

)
= 2ε1

u2 has degree 2 and weight: 4

(
ε1 + ε2

2

)
= 2ε1 + 2ε2

Donald R. King (NU) Spherical nilpotent orbits CBMS 7.16.12 15 / 44



Example

(Conclusion)

K -decomposition of S [−2, (1, 1)]:

S [−2, (1, 1)] =
∞∑

n=0

∞∑
m=0

V (2m + 1, 2n + 1),

V (2m + 1, 2n + 1) is irr. rep. of SO(4, C) with highest weight
(2m + 1, 2n + 1).

(See [Knapp-Vogan, 1995], pp586-588)

The diagram below shows the action of σ1 and σ2 on highest weights in
S [−2, (1, 1)].
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K -type diagram of S [−2, (1, 1)]

s
s

s
s
sf f f

f f
f

s s s s s s ss s s s s s
s s s s s ss s s s ss s s ss s ss s

ss
s ss

ss s
s

ss
s

�
���

-
σ1

σ2

ε1

ε2
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Symplectic structure on nilpotent orbits

Ω, an orbit in N(g) (or N(gC)), is a real symplectic manifold.

Kostant-Souriau symplectic form on Ω

For Ω = G · E , the G -invariant form on Ω is defined as:

wΩ|E (Ȳ , Z̄ ) = B(E , [Y , Z ]),

where B is the Killing form of g, and Ȳ , Z̄ ∈ g/gE = TE (Ω).

Example

g = sl(2, R)

Ω = G ·
[
0 1
0 0

]
=

{[
x y − z

y + z −x

]
|x , y ∈ R, z =

√
x2 + y2 > 0

}
.

Then (up to a constant):

wΩ =
dx ∧ dy

z
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The moment mapping for nilpotent orbits

For ξ ∈ k, define the vector field ξΩ.

ξΩf (E ′) :=
df (exp(−tξ) · E ′)

dt
|t=0, where f ∈ C∞(Ω).

The moment map ΦΩ : Ω → k∗ satisfies d [ΦΩ(·)(ξ)] = −ι(ξΩ)(wΩ),
∀ξ ∈ k.

In this case, ΦΩ(E ′) = B(E ′k , ·). So think of Φ as projection onto k, i.e.,

we write, ΦΩ(E ′) = E ′k .

Φ is K -equivariant and proper.

Ω is said to be a Hamiltonian K -space.
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Example

For g = sl(2, R), K = SO(2) acts on the cone:
Ω = {(x , y , z)|x , y ∈ R, z =

√
x2 + y2 > 0}.

Identify k∗ with the z-axis and p∗ with the xy -plane.

Φ projects the upper cone onto the positive z-axis.

K orbits in Ω are circles.

Φ is “one-to-one” on K -orbits.

In general what can we say about Φ(Ω), when Ω is nilpotent?

There are many nice results on the image of the moment map for compact
Hamiltonian K -spaces.
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Multiplicity-free spaces and Poisson Algebras

Let (M, ρ) be a symplectic manifold with a Hamiltonian action by a
compact group K with moment map Φ : M → k∗.

Definition

The Hamiltonian K -action on M is said to be multiplicity-free if Φ is
one-to-one on K -orbits in M.

C∞(M) is a Poisson algebra: f ∈ C∞(M) 7→ the vector field Xf , such
that df (Y ) = ρ(Xf , Y ), ∀ smooth vector fields Y on M.

If f , g ∈ C∞(M), {f , g} := ρ(Xf , Xg}

M is multiplicity-free ⇐⇒ C∞(M)K is commutative.
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Kostant-Sekiguchi Correspondence

There is is a bijection: N(g)/G ↔ N(pC)/KC

This bijection can be defined in terms of “Kostant-Sekiguchi” sl(2)-triples:

{H, E , F} 7→ {i(E − F ), 1
2(H − i(E + F )), 1

2(H + i(E + F ))}
(assuming θ(E ) = −F )

{x , e, f } 7→ {e + f , 1
2(−ix + i(e − f )), 1

2(ix + i(e − f ))}
(assuming ē = f )

Denote the bijection Ω 7→ OΩ. (Ω, O) will be said to be a KS pair if
O = OΩ.
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Some properties of the KS pair (Ω, O)

1 GC · Ω = GC · O.

2 (Barbasch-Sepanski) If (Ωi , Oi ), i = 1, 2, are KS pairs then
Ω1 ⊂ Ω2 ⇐⇒ O1 ⊂ O2

3 [Vergne, 1995] There is a K -equivariant diffeomorphism Ω → O.
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Characterizing multiplicity-free nilpotent orbits

Theorem

[K, 2002] If (Ω, O) is a KS pair, Ω is multiplicity free ⇐⇒ O is spherical.

“Multiplicity-freeness” on the symplectic side of the KS correspondence
coincides with “multiplicity-freeness” on the algebraic side of the
correspondence.
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An “enhanced” KS-correspondence

Suppose (Ω, O) is a Kostant-Sekiguchi pair.

Many properties of (the K -action on) Ω are mirrored in properties of
(the KC-action on) O.

This suggests that we develop an “enhanced” version of the
Kostant-Sekiguchi correspondence.

Here is an attempt to formulate such an enhancement.
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The Kostant-Sekiguchi Ansatz

Ansatz

There is a matching between the “interesting” K-invariants arising from
the Hamiltonian K-space structure of Ω and the “interesting”
KC-invariants arising from the KC-action on O.

Remark

“interesting” = interesting from the point of representation theory.

Think of the Matsuki Correspondence and its extensions.
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Complexity of nilpotent orbits

Definition

c := cK
C
(O), the complexity of O, is the co-dimension of a generic orbit

of a Borel subgroup of KC in O.

Remark

c is the smallest non-negative integer such that if λ ∈ K̂ and
mO(λ) 6= 0, mO(nλ) grows no faster than a constant multiple of nc

as n →∞.

c(O) = c(O)

c(O) = 0 ⇐⇒ O is spherical.

Example

If O is the principal KC-nilpotent in pC for g = sl(3, R), then c(O) = 1.
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Example

(continued)

R[O] '
∞∑
j=0

mjHj ,

where

mj =


j−1
2 if j is odd,

j
2 + 1 if j is even.
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Characterizing complexity of nilpotent orbits

Theorem

[K, 2005] Let (Ω, O) be a KS pair and A(Ω)K denote the Poisson algebra
of K-invariant real analytic functions on Ω. Then c(O) measures the
“difference” between A(Ω)K and its (Poisson) center i.e., the failure of
A(Ω)K to be commutative.

More precisely, we can find 2c(O) functionally independent K -invariant
real analytic functions on Ω which lie outside the center of A(Ω)K and
satisfy one other technical condition. 2c(O) is the largest integer for
which this is possible.
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Some open problems

1 (Convexity) The image of the moment map Φ : Ω → k∗

2 (Duistermaat-Heckman measure) The pushforward to k∗ of Liouville
measure on Ω under Φ
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Fix the KS pair (Ω, O).

Choose a closed Weyl chamber t+ in t∗ = Hom(t, R).

Γ(O) ⊂ it+ and C(O) ⊂ it+

Conjecture

ΦΩ(Ω) ∩ t+ = −i
(
C(O)

)
Remark

The conjecture is equivalent to:

−i Interior
(
C(O)

)
⊆ ΦΩ(Ω) ∩ t+ ⊆ −i

(
C(O) \ 0

)
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Some evidence for the conjecture on Φ(Ω)

1 Knop (2002) “Convexity of Hamiltonian manifolds”

Φ proper ⇒ Ω is convex (in Knop’s sense)

⇒ ΦΩ(Ω) ∩ t+ is locally closed and is locally a polyhedral cone.

2 Minimal non-zero orbits

3 Other small spherical nilpotent orbits for g of low rank
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Verifying the conjecture for minimal nilpotent orbits

ΦΩ(Ω) ∩ t+ and C(O) are one dimensional:

G = KAN

Assume K is semi-simple, then Ωmin is unique.

Ωmin = G · E , where N · E = E and A · E = R+E

Φ(Ωmin) = Φ(K · R+E ) = K · R+Φ(E )

R[Omin] =
∞∑

n=0

V (nλ)

, where λ ∈ K · iR+Φ(E ).
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For other small spherical nilpotent orbits G · E has a similar decomposition
as Ka(s) · E , where a(s) is a certain abelian subspace of p (depending on
the special KS triple containing E ). E is a sum of eigenvectors for a(s).
This allows one to compute Φ(Ω).

Example

g = sp(4, R)

Ω1 ↔
+ −
+ − (“holomorphic” nilpotent)

Ω2 ↔
+ −
− +

(“pseudo-holomorphic” nilpotent)

As usual ∆+(k, t) = {ε1 − ε2}
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Φ(Ω1) ∩ t+ for g = sp(4, R)

Example

(Continued)

�
�

�
�

�
�

�

ε1

ε2

r
r
r

r
r

r r r r
r

Γ(O1) is the span over Z+ of −2ε2 and −2ε1 − 2ε2.

Φ(Ω1) ∩ t+ is (−i times) the half-quadrant: ε2 ≤ ε1 < 0.
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Φ(Ω2) ∩ t+ for g = sp(4, R)

Example

(Conclusion)

ε1

ε2

r r r
r r r
r r r
r r r

Γ(O2) is the span over Z+ of 2ε1 and −2ε2.

Φ(Ω2) ∩ t+ is (−i times) the quadrant: ε1 > 0, ε2 < 0.
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Find a precise description of Φ(Ω) ∩ t+.

ΦΩ(Ω) ∩ t+ may have some interesting geometry.

Donald R. King (NU) Spherical nilpotent orbits CBMS 7.16.12 37 / 44



Φ∗(βΩ), the pushforward to k∗ of Liouville measure on Ω

Definition

w = Kostant-Souriau form on Ω, d = dimΩ
2 .

Liouville measure: βΩ =
wd

(2π)dd!

Φ∗(βΩ)(f ) = βΩ(f ◦ Φ), for f ∈ C∞
c (k∗)

Example

g = sl(2, R)
Ω = {(x , y , z)|x , y ∈ R, z =

√
x2 + y2 > 0}. βΩ = 1

2π
dx∧dy

z .

Φ∗(βΩ) = Lebesgue measure on positive half of R.

Donald R. King (NU) Spherical nilpotent orbits CBMS 7.16.12 38 / 44



Φ∗(βΩ), the pushforward to k∗ of Liouville measure on Ω

Definition

w = Kostant-Souriau form on Ω, d = dimΩ
2 .

Liouville measure: βΩ =
wd

(2π)dd!

Φ∗(βΩ)(f ) = βΩ(f ◦ Φ), for f ∈ C∞
c (k∗)

Example

g = sl(2, R)
Ω = {(x , y , z)|x , y ∈ R, z =

√
x2 + y2 > 0}. βΩ = 1

2π
dx∧dy

z .

Φ∗(βΩ) = Lebesgue measure on positive half of R.

Donald R. King (NU) Spherical nilpotent orbits CBMS 7.16.12 38 / 44



MO, asymptotic K -multiplicity distribution of O

Definition

For µ ∈ K̂ , set jµ = Liouville measure on K · −i(µ + ρ).

For f ∈ C∞
c (k∗), and t > 0, set ft(x) = t− dim kf (t−1x).

Set p = d − dim k,

MO(f ) := lim
t→∞

t−p
∑
µ∈bK

mO(µ)jµ(ft)

Example

g = sl(2, R) (Continued)

MO(f ) = lim
t→∞

t−1
∞∑

n=1

δn(ft)= Lebesgue measure on positive half of R.
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Conjecture

(Vogan, 199?) MO = Φ∗(βΩ)

Status of Conjecture

Vergne proved the conjecture for complex g ([Vergne, 1998]

(K, ) Conjecture holds for many nilpotent orbits (e.g., minimal, even)
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Conclusion

Find more interesting “matching” invariants for Ω and O.
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