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Aims

General aim
Understand the singularities of nilpotent cones.

More specifically

I describe the singularities of one nilpotent orbit with respect to
another orbit in its closure

I case of minimal degenerations: orbits are adjacent in partial
order

I case of special nilpotent orbits: the duality of Kraft-Procesi
from GLn has an extension to all types

I case of special pieces: there is an analog of Lusztig’s
conjecture on special pieces for slices
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Nilpotent orbit closures

g a complex simple Lie algebra (e.g. sln).
G the adjoint Lie group of g

x ∈ g a nilpotent element, Ox := G · x , the nilpotent orbit of x .
I The closure Ox is a union of finitely many nilpotent orbits.
I Ox is smooth at any point of Ox , but it’s singular at any

other point (Kaledin).
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Hasse diagram
For two orbits O,O′,
denote by O′ < O if O′ ( O.
0 < Omin < · · · could be very complicated · · · < Osubreg < Oreg

I Unique maximal nilpotent orbit Oreg of dimension equal to
the number of roots. Called the regular or principal nilpotent
orbit.

I Unique orbit Osubreg containing all non-regular orbits in its
closure. It is of codimension 2 in Oreg . Called the subregular
nilpotent orbit.

I Omin is the minimal non-zero nilpotent orbit. Its closure Ōmin
is normal with an isolated singularity at 0. It is the orbit of a
highest root vector.

In G2, the Hasse diagram is

0− A1 − Ã1 − G2(a1)− G2



Transverse Slices

Given O′ < O. Let e ∈ O′.

Definition
A transverse slice of O at the point e is a locally closed subvariety
S ⊂ O such that e ∈ S and the map

G × S → O

is smooth at (1, e).

If S is a slice, then S ∩ O′ = e (and reduced).

As we’ll see in moment, slices always exist in the present situation.



Smooth Equivalence

We say two singularities x ∈ X and y ∈ Y are smoothly equivalent
if there exists a variety Z and two morphisms

(X , x)
ϕ←− (Z , z)

ψ−→ (Y , y)

with ϕ and ψ smooth at z .

We then write Sing(X , x) = Sing(Y , y).

Smooth equivalence preserves various (analytic) properties at x :

smoothness, normality, unibranchness, rational singularities

but not irreducibility at x .
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Slices give smooth equivalence

Given a transverse slice S ⊂ Ō at e, we have

Sing(S, e) = Sing(Ō, e).



Slodowy Slices

There exists a natural slice, called the Slodowy slice.

Given nilpotent e, one can find an sl2-triple (e, h, f ) in g, meaning

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f

We denote by gf the centralizer of f in g. Then the affine subspace

Se := e + gf

is a transverse slice in g at the point e.

And Se ∩ O is a transverse slice in O at e.
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Extra action on slice

The reductive centralizer Z := G 〈e,h,f 〉 acts on Se = e + gf ,
and also on Se ∩ O.

In general, Se ∩ O is not irreducible (always connected).

So the component group A(e) := Z/Z 0 will act on the irreducible
components.

Goal
Identify Sing(Se ∩ Ō, e) together with the action of A(e)



Two types of singularities

For now, let O′ < O be adjacent in the partial order. Called a
minimal degeneration.

In this case, the variety Se ∩ Ō has an isolated singularity at e.

There are two families of singularities that arise in all but a finite
number of cases.
I A-D-E or Du Val singularities (in the case of dimension two).
I Those associated to minimal nilpotent orbits (in the case of

dimension ≥ 4.)



Singularities coming from minimal orbits

For each simple Lie algebra, we refer to the singularity of Omin at 0
according to lower case letters:

an, bn, cn, dn, g2, f4, e6, e7, e8.

Some of these varieties carry natural actions which fix 0, coming
from outer automorphisms of g.
We write these as:

a+
n , d+

n , d++
4 , e+

6 ,

where d++
4 refers to the S3 action.
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A-D-E singularities

Take a finite subgroup Γ ⊂ SL2(C)

Define X = C2/Γ, the quotient.

The functions on X are the invariant functions C[x , y ]Γ.

X is two-dimensional, normal, and has an isolated singularity at 0.



Which Γ are possible?

{±I}
_

��
Γ_

��

⊂ SU(2)
_

��

⊂ SL2(C)

Γ′ ⊂ SO(3)

Γ′ is the (rotational) symmetry group of a polyhedron.
I elongated pyramid → cyclic group of order n
I elongated double pyramid → dihedral group of order 2n
I tetrahedron, cube, icosahedron → Alt4, S4, Alt5.

So Γ is a cover of Γ′ with kernel of order at most 2.
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Table of A-D-E singularities



Automorphisms of the A-D-E surfaces

Part of the McKay correspondence story

These surfaces X also have automorphisms corresponding to the
automorphisms of the Dynkin diagram. Corresponds to permuting
the P1’s.

From the perspective of the finite group Γ, the automorphisms are
induced from the normalizer of Γ in SL2.

For example, V4 = Γ′D4
is normal in S4 = Γ′E7

and the quotient is
S3.
This gives triality for D4.



Notation for A-D-E surfaces

Refer to singularity of type X according to the type of its Dynkin
diagram:

An,Dn,E6,E7,E8

and accounting for the automorphisms:

Bn = A+
2n−1 := A2n−1 with S2-action

Cn = D+
n+1 := Dn+1 with S2-action

F4 = E +
6 := E6 with S2-action

G2 = D++
4 := D4 with S3-action

Note: A1 = a1.

How do these arise as singularities of slices?



Theorems of Brieskorn and Slodowy

Theorem (Brieskorn, 1970)
Suppose that g is of ADE type Γ. Then

Sing(Oreg,Osubreg) = Γ

is an ADE singularity of the same type.

Slodowy explained what happens for non simply-laced Lie algebras:

Bn = A+
2n−1

Cn = D+
n+1

F4 = E +
6

G2 = D++
4

and the action is the one coming from A(e).



Results of Kraft and Procesi for sln

Theorem (Kraft-Procesi, case of sln)
If the r first lines and the s first columns of λ et µ are identical,
and if λ̂ and µ̂ are the partitions obtained by removing those
common lines and columns, then

Sing(Oλ,Oµ) = Sing(Oλ̂,Oµ̂)

Eventually we get down to one of the two cases
for a smaller rank sl.
It follows that all minimal degenerations are either:
I Ak (codimension 2)
I ak (codimension > 2)

The two cases are perfectly exchanged a duality. . .
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Example: type A5

(6)
A5

30

(5, 1)
A3

28

(4, 2)

A1 A1

26

(4, 12)

A2

(32)

A2

24
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a2 a2
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(3, 13)

a1

(23)

a1

18

(22, 12)
a3

16

(2, 14)
a5

10

(16) 0



Other classical groups

Kraft-Procesi (1982)
In other classical types, if O′ < O a minimal degeneration, then
Sing(O,O′) is equivalent to one of the following:

A2k−1
Dk

A2k−1 ∪ A2k−1

bk
ck
dk



Bring in A(e)-action

Proposition (FJLS, 2012)

In the classical groups Bn, Cn, Dn, the component group A(e) acts
as transitively as it possible can on irreducible components of
minimal degenerations.
We must work in the full orthogonal group in type D.

The minimal degenerations with A(e)-action are:

Bk := A+
2k−1

Ck := D+
k+1

Bk ∪ Bk
bk
ck
d+

k

A(e) permutes the irreducible components in the Bk ∪ Bk cases.
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Example

In C6, which is Sp12, orbits correspond to certain partitions of 12.

I O corresponds to (5, 5, 1, 1)

I e ∈ O′ corresponds to (4, 4, 2, 2)

I Kraft-Procesi say that the singularity is A3 ∪ A3.
I A(e) = S2 × S2.
I one generator of A(e) flips the components, the other acts

non-trivially on both components at the same time.
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Other known results

Kraft 1989 Case of G2.

New singularity, called m, for the singularity of Ã1 along A1.

C2 → C7 = C3 ⊕ C4

(u, v) 7→ (u2, uv , v2; u3, u2v , uv2, v3)

The normalization of m is smooth. The normalization is just C2.



Summary of our results in exceptional groups

Theorem: In the exceptional groups, the irreducible components
of minimal degenerations are:
I A-D-E type
I minimal orbit closure (predicted by reductive centralizer,

which acts transitively on smooth part)
I m
I Sing(A3 + 2A1, 2A2 + 2A1) in E8, of dimension 4.

It carries action of Sp4, non-normal but unibranched. Its
normalization is C4.

I Three distinct cases of dimension 4, that carry an action of
SL2, but not transitive on the smooth part:

I Sing(2A2 + A1,A2 + 2A1) in E6
I Sing(A4 + A1,A3 + A2 + A1) in E7
I Sing(A4 + A3,A4 + A2 + A1) in E8

Also: A(e) acts transitively on irreducible components of slice



Normality of orbit closures

The singularity Bk ∪ Bk =: 2.Bk shows that the orbit O is not
unibranched at e ∈ O′. In particular, O is not normal at e.

A consequence of the Kraft-Procesi work is that in the classical
groups is that this is the only way for O to be not normal.

That is, O fails to be normal if and only if it if it fails to be normal
in codimension two and and the singularity is Bk ∪ Bk .

In the exceptional groups, normality can fail in three additional
ways (and these should conjecturally be all of them):
I it is branched at a minimal degeneration (e.g. 3.a1 or 2.g2).
I it is branched at a point farther down (detected by Green

functions).
I the singularity m arises (non-normal and unibranched).
I the one case in E8 (non-normal and unibranched).
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Idea of proof

If dim S = 2, general results say S has an isolated symplectic
singularity at e and therefore, up to normalization, it is of type
A− D − E .

Then we can locate a minimal resolution, similar to the Springer
resolution of the whole nilpotent cone, and then use a result of
Borho-MacPherson to count the number of P1’s over e to
determine which A,D,E singularity occurs. This invokes using the
Springer correspondence and looking up tables of Green functions.

If dim S ≥ 4, then the singularity is closely related to the minimal
orbit in a reductive centralizer of e. Many times, in fact, S is
exactly e + this minimal orbit.
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Special nilpotent orbits

Springer correspondence:
W = Weyl Group.

{irreducible W −modules} ↪→

{(O, φ)| O nilp. orbit, φ irred representation of A(O)}.

A nilp. orbit O is called special if the irred. rep. ρ(O,1) is a special
W -representation.

Special nilpotent orbits play a key role in several problems in
representation theory:
I Classification of irred. complex rep. of a reductive gp over a

finite field
I classification of primitive ideals in the enveloping alg. of a

semi-simple Lie algebra



Special orbits and Lusztig-Spaltenstein involution

I g of type A, every nilpotent orbit is special.
I g of type B or C , Op is special ⇔ the transpose partition pt

defines a nilpotent orbit in g.
I g of type Dn, Op is special ⇔ the transpose partition pt

defines a nilp. orbit in Cn.

If we take the Hasse diagram of special orbits, then there exists an
order-reversing Lusztig-Spaltenstein involution d .

It is obtained by tensoring the corresponding Springer
representation by the sign rep (with 3 exceptions).
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Special orbits and Lusztig-Spaltenstein involution

We can also view d as going between special orbits in g and those
in its Langlands dual Lg.

The involution is given by the map p 7→ pt in the case of types
A,B,C .

Goal
Identify the singularities between adjacent special orbits and what
happens under d



Minimal special orbits

We can look at the closure of the minimal non-zero special orbit in
each simple Lie algebra. This is a normal variety.

In simply-laced cases, minimal orbit is special.

In the non-simply laced cases, we obtain the varieties:

bsp
n := 0 bn←− A1

a1←− Ã1

csp
n := 0 cn←− A1

cn−1←−−− Ã1

f sp
4 := 0 f4←− A1

c3←− Ã1

g sp
2 := 0 g2←− A1

m←− Ã1
a1←− G2(a1)



Minimal special orbits

These can also be viewed as taking a minimal orbit in a
simply-laced Lie algebra and using the outer automorphism.

bsp
n = dn+1/S2

csp
n = a2n−1/S2

f sp
4 = e6/S2

g sp
2 = d4/S3



Theorem, Duality

Let (O,O′) be a minimal degeneration of two special nilpotent
orbits.
I Either O′ ⊂ Ō or d(O) ⊂ d(O′) is of codimension 2.

Observed by Lusztig.
I Under a technical condition involving Lusztig’s canonical

quotient, duality interchanges types, just like Kraft-Procesi
observed in GLn:

An ! an Dn ! dn En ! en
Bn ! csp

n or a+
2n−1

Cn ! bsp
n or d+

n+1
G2 ! g sp

2 or d++
4

F4 ! f sp
4 or e+

6
I The A(e)-action is critical. We quotient by part of the

A(e)-action and the remaining action determines the duality.
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Type F4

F4
F4

48

F4(a1)
C3

46

F4(a2)A1 A1
44

B3

G2

C3

4.G2

42

F4(a3)
A1

40

C3(a1)
m A1

38

A1Ã2

g2

m
B2

2.A1

36

A2Ã1
a+
2

34

Ã2
a1

A2
a1

30

A1Ã1
a+
3

28

Ã1
c3

22

A1
f4

16

0 0

F4
F4

48

F4(a1)
C3

46

F4(a2)
A1 A1

44

C3
4.G2

B3
G2

42

F4(a3)
g sp

2 d4/S4
40

Ã2
a1

A2
a1

30

A1Ã1
a+

3

28

Ã1
f sp
4

22

0 0



More on the duality

I The duality fails, in some sense, when the A(e)-action does
not descend to Lusztig’s quotient Ā(e). When it does fail:
In codimension 2, we always have Ck matched up with ck−1.
Stranger: in codim ≥ 4, we get some new singularities:

d4/S4 matched with G2

dk/(S2 × S2) matched with Ck−1.
I Another beautiful phenomenon: the slice between special

orbits (when the duality works) always comes from a smaller
Lie algebra, except for the three exceptional orbits in E7 and
E8 (these are the ones where tensoring with sign didn’t quite
work). There, the singularities are of type A+

2 ,A
+
4 and a+

2 , a+
4 .



Special pieces

Definition
Let O be a special nilp. orbit. The special piece P(O) containing
O is the locally-closed subvariety of g consisting of nilp. orbits
O′ ⊂ Ō which is not contained in the closure of any special nilp.
orbits O1 ( Ō.

Lusztig conjectured in 1981 that every special piece is rationally
smooth (i.e. a rational homology manifold).

This has been proved by Kraft-Procesi (for classical types),
Beynon-Spaltenstein (for En), Shoji (for F4) and Lusztig (for G2).



A conjecture of Lusztig

In 1997, Lusztig formulated the following conj. to explain the
rational smoothness:

Conjecture (Lusztig)
Every special piece P(O) is a finite quotient of a smooth variety
P/H, and the orbits in P(O) correspond to the images of points in
P whose H-stabilizer are conjugate in H.

I Known for classical Lie algebras by Kraft-Procesi (1989).
I For exceptional cases, Lusztig has predicted the group H and

the correspondence between conj. classes in H and nilpotent
orbits contained in P(O).

Conjecture (Achar-Sage, 2009)
Every special piece is normal.



Our conjecture on special pieces

Conjecture
Consider a special piece P(O) in an exceptional Lie algebra and let
Om ⊂ P(O) be a minimal orbit in P(O). Then the transverse slice
in Ō to Om is isomorphic to one of the following

(hn ⊕ h∗n)k/Sn+1

where hn is a Cartan subalgebra in An on which the Weyl group
W (An) = Sn+1 acts and n is an integer between 1 and 4.

This is the analog of Lusztig’s conjecture in the setting of slices,
since H = Sn+1.



Special pieces theorem

Theorem
Our conjecture on slices of special pieces holds for all except the
following two pieces in E8 are unknown:
(E8(a7),A4 + A3) (h4 ⊕ h∗4)/S5
(D4(a1) + A1, 2A2 + 2A1) (h2 ⊕ h∗2)2/S3.

A similar statement is also true in the classical groups, where H is
elementary abelian.

Corollary
The normality conjecture of Achar-Sage holds for special pieces
except possibly for the above two special pieces.
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F4(a3)[14]

C3(a1)[2,12]

A1

Ã2 + A1
[3,1]

m

B2
[2,2]

(A1)

m

A2 + Ã1
[4]

(A1)

Ã2

g2

A2

a2



E8(a7)[15]

E7(a5)[2,13]

E6(a3) + A1
[3,12] D6(a2)[22,1]

E6(a3)

A5 + A1
[3,2]D5(a1) + A2

[4,1]

A4 + A3
[5] D4 + A2


