イロト 不得 トイヨト イヨト

3

Unitary Realization of Cohomologically Induced Modules

Leticia Barchini

Department of Mathematics Oklahoma State University

July, 2012

Partially based on joint work with Roger Zierau

INTRODUCTION

Problem:

Describe the unitary globalization of a class of cohomologically induced modules, i.e., build a Hilbert space on which each $g \in G_{\mathbb{R}}$ acts by a unitary operator and the resulting action is irreducible.

Method:

Orbit method; build the Hilbert space "from a co-adjoint orbit".

Goal of the lecture:

Describe the status of the problem for elliptic orbits.

INTRODUCTION

Problem:

Describe the unitary globalization of a class of cohomologically induced modules, i.e., build a Hilbert space on which each $g \in G_{\mathbb{R}}$ acts by a unitary operator and the resulting action is irreducible.

Method:

Orbit method; build the Hilbert space "from a co-adjoint orbit".

Goal of the lecture:

Describe the status of the problem for elliptic orbits.

INTRODUCTION

Problem:

Describe the unitary globalization of a class of cohomologically induced modules, i.e., build a Hilbert space on which each $g \in G_{\mathbb{R}}$ acts by a unitary operator and the resulting action is irreducible.

Method:

Orbit method; build the Hilbert space "from a co-adjoint orbit".

Goal of the lecture:

Describe the status of the problem for elliptic orbits.

Introduction	Dolbeault Cohomology	Indefinite Harmonic Theory	A different approach

Set up and Notation:

- G_R is a connected semisimple Lie group with maximal compact subgroup K_R.
 We let Θ be the corresponding Cartan involution.
- **2** We write $\mathfrak{g}_{\mathbb{R}} = \text{Lie}(G_{\mathbb{R}})$; and we let \mathfrak{g} be the complexification of $\mathfrak{g}_{\mathbb{R}}$.
- G stands for the complexification of $G_{\mathbb{R}}$.
- $\bullet \ \ \, \theta, \ \ the \ \ differential \ \ of \ \ \Theta, \ \ induces \ \ splittings \ \ g_{\mathbb R}=\mathfrak k_{\mathbb R}\oplus\mathfrak p_{\mathbb R} \ \ and \ \ g=\mathfrak k\oplus\mathfrak p$
- **9** $G_{\mathbb{R}}$ acts on $\mathfrak{g}_{\mathbb{R}}^*$ via the co-adjoint rep. For $\lambda \in \mathfrak{g}_{\mathbb{R}}^*$ let

$$L_{\mathbb{R}} = \operatorname{Stab}_{G_{\mathbb{R}}}(\lambda) = \{g \in G_{\mathbb{R}} : \operatorname{Ad}^{*}(g)\lambda = \lambda\}$$

 $\mathcal{O} = G_{\mathbb{R}} \cdot \lambda \equiv G_{\mathbb{R}}/L_{\mathbb{R}}.$

In this talk we will work with Elliptic co-adjoint orbits i.e., we let t₀ be a compact torus and choose λ ∈ t₀*. (Note that λ is semisimple with purely imaginary eigenvalues.)

CO-ADJOINT ORBITS

We identify $\mathfrak{g}_{\mathbb{R}}^* \simeq \mathfrak{g}_{\mathbb{R}}$ via the Killing form. Observe that $\lambda \in \mathfrak{g}_{\mathbb{R}}^* \leftrightarrow X_\lambda \in \mathfrak{g}_{\mathbb{R}}$.

• The element X_{λ} defines a complex θ -stable parabolic subalgebra $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$ by means of

$$\begin{split} \mathfrak{l} &= \{ X \in \mathfrak{g} : \mathsf{ad}(iX_\lambda)X = 0 \} \\ \mathfrak{u} &= \{ X \in \mathfrak{g} : \mathsf{ad}(iX_\lambda)X = r \; X \; \mathsf{with} r > 0 \}. \end{split}$$

The splitting $\mathcal{T}_e(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}})_{\mathbb{C}} \simeq \mathfrak{g}/\mathfrak{l} \simeq \mathfrak{u} \oplus \overline{\mathfrak{u}}$ induces an almost complex structure on $\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}}$, i.e.

$$egin{aligned} \mathcal{T}(G_{\mathbb{R}}/L_{\mathbb{R}})_{\mathbb{C}} &= \mathcal{T}^{1,0}(G_{\mathbb{R}}/L_{\mathbb{R}})_{\mathbb{C}} \oplus \mathcal{T}^{0,1}(G_{\mathbb{R}}/L_{\mathbb{R}})_{\mathbb{C}} \ &= ig(G_{\mathbb{R}} imes L_{\mathbb{R}} \, \widehat{\mathfrak{u}}ig) \oplus ig(G_{\mathbb{R}} imes L_{\mathbb{R}} \, \mathfrak{u}ig) \end{aligned}$$

that is integrable. Hence, $G_{\mathbb{R}}/L_{\mathbb{R}}$ is a complex manifold.

When L_R is compact T(G_R/L_R)_C admits an invariant hermitian positive metric. [Identify T_e(G_R/L_R)_C ≃ u ⊕ ū. For X, Y ∈ u define h(X, Y) = -B(X, ∂Y) where B is the Killing form. h is L_R-invariant and induces the positive definite hermitian form on T(G_R/L_R)_C.]

CO-ADJOINT ORBITS

We identify $\mathfrak{g}_{\mathbb{R}}^* \simeq \mathfrak{g}_{\mathbb{R}}$ via the Killing form. Observe that $\lambda \in \mathfrak{g}_{\mathbb{R}}^* \leftrightarrow X_\lambda \in \mathfrak{g}_{\mathbb{R}}$.

• The element X_{λ} defines a complex θ -stable parabolic subalgebra $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$ by means of

$$\begin{split} \mathfrak{l} &= \{ X \in \mathfrak{g} : \mathsf{ad}(iX_\lambda)X = 0 \} \\ \mathfrak{u} &= \{ X \in \mathfrak{g} : \mathsf{ad}(iX_\lambda)X = r \; X \; \mathsf{with} r > 0 \}. \end{split}$$

The splitting $\mathcal{T}_e(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}})_{\mathbb{C}} \simeq \mathfrak{g}/\mathfrak{l} \simeq \mathfrak{u} \oplus \overline{\mathfrak{u}}$ induces an almost complex structure on $\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}}$, i.e.

$$egin{aligned} \mathcal{T}(G_{\mathbb{R}}/L_{\mathbb{R}})_{\mathbb{C}} &= \mathcal{T}^{1,0}(G_{\mathbb{R}}/L_{\mathbb{R}})_{\mathbb{C}} \oplus \mathcal{T}^{0,1}(G_{\mathbb{R}}/L_{\mathbb{R}})_{\mathbb{C}} \ &= ig(G_{\mathbb{R}} imes L_{k} \, ar{\mathfrak{u}}ig) \oplus ig(G_{\mathbb{R}} imes L_{k} \, \mathfrak{u}ig) \end{aligned}$$

that is integrable. Hence, $G_{\mathbb{R}}/L_{\mathbb{R}}$ is a complex manifold.

When L_R is compact T(G_R/L_R)_C admits an invariant hermitian positive metric. [Identify T_e(G_R/L_R)_C ≃ u ⊕ ū. For X, Y ∈ u define h(X, Y) = -B(X, ∂Y) where B is the Killing form. h is L_R-invariant and induces the positive definite hermitian form on T(G_R/L_R)_C.]

- 日本 - 4 日本 - 4 日本 - 日本

How to attach a representation to $G_{\mathbb{R}}/L_{\mathbb{R}} \simeq G_{\mathbb{R}} \cdot \lambda$ when $G_{\mathbb{R}}$ is compact?

Lemma:

Let $G_{\mathbb{R}}/L_{\mathbb{R}}$ be a manifold that admits an invariant complex structure induced by a complex polarization q. The space of holomorphic homogeneous bundles over $G_{\mathbb{R}}/L_{\mathbb{R}}$ is in bijection with the space of $(L_{\mathbb{R}}, q)$ -modules.

• Extend the $L_{\mathbb{R}}$ -module (E, π) to a q-module by making \mathfrak{u} act trivially. The bundle attached to (E, π) is

$$\mathcal{E} = G_{\mathbb{R}} \times_{L_{\mathbb{R}}} E \simeq G_{\mathbb{R}} \times E / \sim$$
 where $(g \ \ell, e) \sim (g, \pi(\ell)e)$.

• If $U \subset G_{\mathbb{R}}/L_{\mathbb{R}}$ is open, then the sheaf of germs of holomorphic sections is determined by

$$\mathcal{O}(\mathcal{E})(U) = \{ f : \tilde{U} \subset G_{\mathbb{R}} \mapsto E : f(g \ \ell) = \pi(\ell)^{-1} f(g) \text{ and} \\ \pi(\xi)(f(g)) + (r(\xi) \cdot f)(g) = 0 \text{ for all } \xi \in \mathfrak{u} \}$$

where *r* stands for right action.

(日) (同) (三) (三) (三) (○) (○)

How to attach a representation to $G_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}} \simeq G_{\mathbb{R}} \cdot \lambda$ when $G_{\mathbb{R}}$ is compact?

Lemma:

Let $G_{\mathbb{R}}/L_{\mathbb{R}}$ be a manifold that admits an invariant complex structure induced by a complex polarization \mathfrak{q} . The space of holomorphic homogeneous bundles over $G_{\mathbb{R}}/L_{\mathbb{R}}$ is in bijection with the space of $(L_{\mathbb{R}},\mathfrak{q})$ -modules.

• Extend the $L_{\mathbb{R}}$ -module (E, π) to a q-module by making \mathfrak{u} act trivially. The bundle attached to (E, π) is

$$\mathcal{E} = \mathcal{G}_{\mathbb{R}} imes_{L_{\mathbb{R}}} \mathcal{E} \simeq \mathcal{G}_{\mathbb{R}} imes \mathcal{E} / \sim$$
 where $(g \ \ell, e) \sim (g, \pi(\ell) e)$.

• If $U \subset G_{\mathbb{R}}/L_{\mathbb{R}}$ is open, then the sheaf of germs of holomorphic sections is determined by

$$\mathcal{O}(\mathcal{E})(U) = \{ f : \tilde{U} \subset G_{\mathbb{R}} \mapsto E : f(g \ \ell) = \pi(\ell)^{-1} f(g) \text{ and} \\ \pi(\xi)(f(g)) + (r(\xi) \cdot f)(g) = 0 \text{ for all } \xi \in \mathfrak{u} \}$$

where *r* stands for right action.

How to attach a representation to $G_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}} \simeq G_{\mathbb{R}} \cdot \lambda$ when $G_{\mathbb{R}}$ is compact?

Lemma:

Let $G_{\mathbb{R}}/L_{\mathbb{R}}$ be a manifold that admits an invariant complex structure induced by a complex polarization \mathfrak{q} . The space of holomorphic homogeneous bundles over $G_{\mathbb{R}}/L_{\mathbb{R}}$ is in bijection with the space of $(L_{\mathbb{R}},\mathfrak{q})$ -modules.

• Extend the $L_{\mathbb{R}}$ -module (E, π) to a q-module by making \mathfrak{u} act trivially. The bundle attached to (E, π) is

$$\mathcal{E} = G_{\mathbb{R}} imes_{L_{\mathbb{R}}} E \simeq G_{\mathbb{R}} imes E / \sim$$
 where $(g \ \ell, e) \sim (g, \pi(\ell)e)$.

• If $U \subset G_{\mathbb{R}}/L_{\mathbb{R}}$ is open, then the sheaf of germs of holomorphic sections is determined by

$$\mathcal{O}(\mathcal{E})(U) = \{ f : \tilde{U} \subset G_{\mathbb{R}} \mapsto E : f(g \ \ell) = \pi(\ell)^{-1} f(g) \text{ and} \\ \pi(\xi)(f(g)) + (r(\xi) \cdot f)(g) = 0 \text{ for all } \xi \in \mathfrak{u} \}$$

where r stands for right action.

Borel-Weil Theorem

Let $G_{\mathbb{R}} \cdot \lambda \simeq G_{\mathbb{R}}/L_{\mathbb{R}}$ be a co-adjoint orbit with complex polarization $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$. Fix $\mathfrak{h} \subset \mathfrak{l}$ a Cartan subalgebra and fix $\Delta(\mathfrak{l})^+$. Let $\chi \in \mathfrak{h}^*$ is dominant for $\Delta(\mathfrak{l})^+$ and let E_{χ} be the $L_{\mathbb{R}}$ -rep. with highest weight χ . Let $\Gamma(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{E}_{\chi})$ be the space of holomorphic sections of the corresponding bundle with its $G_{\mathbb{R}}$ -action. If $\chi + \rho$ is regular and

 $\langle \chi + \rho, \alpha \rangle < 0$ for all $\alpha \in \Delta(\mathfrak{u})$,

then $\Gamma(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{E}_{\chi})$ is an irreducible rep. of $G_{\mathbb{R}}$. All irreducible rep. of $G_{\mathbb{R}}$ arise this way.

Relevant to the proof of the Theorem are:

• The classification of irred. rep. of a compact group (Theorem of the highest weight) and

• Frobenious reciprocity $\operatorname{Hom}_{G_{\mathbb{R}}}(V, \Gamma(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{E}_{\chi})) \simeq \operatorname{Hom}_{L_{\mathbb{R}}}(V, E).$

• Unitarity essentially follows from the fact that continuous functions on a compact manifold are L^2 . We'll get back to this as we need to consider more general situations.

Borel-Weil Theorem

Let $G_{\mathbb{R}} \cdot \lambda \simeq G_{\mathbb{R}}/L_{\mathbb{R}}$ be a co-adjoint orbit with complex polarization $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$. Fix $\mathfrak{h} \subset \mathfrak{l}$ a Cartan subalgebra and fix $\Delta(\mathfrak{l})^+$. Let $\chi \in \mathfrak{h}^*$ is dominant for $\Delta(\mathfrak{l})^+$ and let E_{χ} be the $L_{\mathbb{R}}$ -rep. with highest weight χ . Let $\Gamma(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{E}_{\chi})$ be the space of holomorphic sections of the corresponding bundle with its $G_{\mathbb{R}}$ -action. If $\chi + \rho$ is regular and

 $\langle \chi + \rho, \alpha \rangle < 0$ for all $\alpha \in \Delta(\mathfrak{u})$,

then $\Gamma(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{E}_{\chi})$ is an irreducible rep. of $G_{\mathbb{R}}$. All irreducible rep. of $G_{\mathbb{R}}$ arise this way.

Relevant to the proof of the Theorem are:

• The classification of irred. rep. of a compact group (Theorem of the highest weight) and

Frobenious reciprocity Hom_{G_R}(V, Γ(G_R/L_R, E_χ)) ≃ Hom_{L_R}(V, E).

• Unitarity essentially follows from the fact that continuous functions on a compact manifold are L^2 . We'll get back to this as we need to consider more general situations.

EXAMPLES OF ELLIPTIC CO-ADJOINT ORBITS

 $\mathcal{G}_{\mathbb{R}} = U(p,q)$ in the usual realization. $t = \text{diag}(x_1, \ldots, x_p) \times \text{diag}(y_1, \ldots, y_q)$.

• If $\lambda = i \operatorname{diag}(1, \dots, 1)) \times \operatorname{diag}(0, \dots, 0)$, then $D = G_{\mathbb{R}} \cdot \lambda = U(p, q)/U(p) \times U(q) = G_{\mathbb{R}}/K_{\mathbb{R}}$. This particular elliptic orbit is a Stein manifold and $T(D)_{\mathbb{C}}$ admits an

hermitian positive metric.

- If $\lambda = i \operatorname{diag}(1, \dots, 1, 0, \dots, 0)) \times \operatorname{diag}(0, \dots, 0)$, then $D = G_{\mathbb{R}} \cdot \lambda = U(p, q)/U(r) \times U(p - r, q) \supset$ $U(p) \times U(q)/(U(r) \times U(p - r) \times U(q))$ as a compact subvariety. D is not Stein. This orbit has the particular property that both fibrations $G_{\mathbb{R}}/(L_{\mathbb{R}} \cap K_{\mathbb{R}}) \to G_{\mathbb{R}}/K_{\mathbb{R}}$ and $G_{\mathbb{R}}/(L_{\mathbb{R}} \cap K_{\mathbb{R}}) \to G_{\mathbb{R}}/L_{\mathbb{R}}$ are holomorphic.
- If $\lambda = \text{diag}(a, \dots, a, b, \dots, b) \times \text{diag}(a, \dots, a, \dots, a, b, \dots, b)$, then $D = G_{\mathbb{R}} \cdot \lambda = U(p, q)/U(r, s) \times U(p - r, q - s).$

How to attach a representation to an elliptic orbit?

Theorem (Harish-Chandra)

Assume that $G_{\mathbb{R}}$ is of hermitian type. Write $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ and write the $\mathcal{K}_{\mathbb{R}}$ invariant splitting of \mathfrak{p} as $\mathfrak{p} = \mathfrak{p}^+ \oplus \mathfrak{p}^-$ Let $\mathfrak{q} = \mathfrak{k} \oplus \mathfrak{p}^+$. Endow $G_{\mathbb{R}}/\mathcal{K}_{\mathbb{R}}$ with the complex structure associated to \mathfrak{q} so that $T^{0,1}(G_{\mathbb{R}}/\mathcal{K}_{\mathbb{R}}) \simeq \mathfrak{p}^+$. Choose $\mathfrak{h} \subset \mathfrak{k}$ and $\Delta^+ = \Delta^+(\mathfrak{k}) \cup \Delta(\mathfrak{p}^+)$. If $\langle \chi + \rho, \alpha \rangle > 0$ for all $\alpha \in \Delta^+$, then the space of L^2 -holomorphic sections $\Gamma^{\text{holo.}}(G_{\mathbb{R}}/\mathcal{K}_{\mathbb{R}}, \mathcal{E}_{\chi})$ is an irreducible unitary representation of $G_{\mathbb{R}}$.

Remark:

- These are the holomorphic discrete series rep. Not all discrete series arise this way.
- To obtain realizations of a larger class of representations we need to consider higher degree cohomology. (Sheaf cohomology H^{*}(G_ℝ/L_ℝ, O(E).)

HOW TO ATTACH A REPRESENTATION TO AN ELLIPTIC ORBIT?

Theorem (Harish-Chandra)

Assume that $G_{\mathbb{R}}$ is of hermitian type. Write $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ and write the $\mathcal{K}_{\mathbb{R}}$ invariant splitting of \mathfrak{p} as $\mathfrak{p} = \mathfrak{p}^+ \oplus \mathfrak{p}^-$ Let $\mathfrak{q} = \mathfrak{k} \oplus \mathfrak{p}^+$. Endow $G_{\mathbb{R}}/\mathcal{K}_{\mathbb{R}}$ with the complex structure associated to \mathfrak{q} so that $T^{0,1}(G_{\mathbb{R}}/\mathcal{K}_{\mathbb{R}}) \simeq \mathfrak{p}^+$. Choose $\mathfrak{h} \subset \mathfrak{k}$ and $\Delta^+ = \Delta^+(\mathfrak{k}) \cup \Delta(\mathfrak{p}^+)$. If $\langle \chi + \rho, \alpha \rangle > 0$ for all $\alpha \in \Delta^+$, then the space of L^2 -holomorphic sections $\Gamma^{\text{holo.}}(G_{\mathbb{R}}/\mathcal{K}_{\mathbb{R}}, \mathcal{E}_{\chi})$ is an irreducible unitary representation of $G_{\mathbb{R}}$.

Remark:

- These are the holomorphic discrete series rep. Not all discrete series arise this way.
- To obtain realizations of a larger class of representations we need to consider higher degree cohomology. (Sheaf cohomology H^{*}(G_R/L_R, O(E).)

DOLBEAULT COHOMOLOGY

Assume that $\mathcal{V} \to M$ is a holomorphic vector bundle over a complex manifold. Let $\mathcal{E}^{p,q}(\mathcal{V})$ be the space of \mathcal{V} -valued diff. forms of type (p,q), i.e. the space of smooth sections of $\mathcal{V} \otimes \wedge^p(\mathcal{T}^{*(1,0)}(M)) \otimes \wedge^q(\mathcal{T}^{*(0,1)}(M))$.

The Dolbeault operator $\overline{\partial}: \mathcal{E}^{p,q}(\mathcal{V}) \to \mathcal{E}^{p,q+1}(\mathcal{V})$ is defined as follows. Let X_1, \ldots, X_p be holomorphic vector fields and let $\overline{Y}_1, \ldots, \overline{Y}_q$ be antiholomrphic vector fields.

$$\overline{\partial}\omega(\overline{Y},\overline{Y}_1,\ldots,\overline{Y}_q) = \sum_{1}^{p} (-1)^{i+p} \overline{Y}_i \cdot \omega(\overline{Y},\overline{Y}_1\ldots\widehat{\overline{Y}}_i,\ldots,\overline{Y}_q) \\ + \sum_{i< j} (-1)^{i+j+p} \omega(\overline{Y},[\overline{Y}_i,\overline{Y}_j],\overline{Y}_1\ldots\widehat{\overline{Y}}_i,\ldots,\overline{\overline{Y}}_j,\ldots,\overline{Y}_q).$$

Fact: $\overline{\partial}^2 = 0$.

Definition:

Let *M* be a complex manifold and let \mathcal{V} be a holomorphic vector bundle on *M*. The (p,q)-Dolbeault cohomology of *M* with coefficients in \mathcal{V} is

 $H^{p,q}(M,\mathcal{V}) = \text{kernel of } \overline{\partial} \text{ on } \mathcal{E}^{p,q}(\mathcal{V})/\text{image of } \overline{\partial} \text{ from } \mathcal{E}^{p,q-1}(\mathcal{V}).$

DOLBEAULT COHOMOLOGY

Assume that $\mathcal{V} \to M$ is a holomorphic vector bundle over a complex manifold. Let $\mathcal{E}^{p,q}(\mathcal{V})$ be the space of \mathcal{V} -valued diff. forms of type (p,q), i.e. the space of smooth sections of $\mathcal{V} \otimes \wedge^p(T^{*(1,0)}(M)) \otimes \wedge^q(T^{*(0,1)}(M))$.

The Dolbeault operator $\overline{\partial}: \mathcal{E}^{p,q}(\mathcal{V}) \to \mathcal{E}^{p,q+1}(\mathcal{V})$ is defined as follows. Let X_1, \ldots, X_p be holomorphic vector fields and let $\overline{Y}_1, \ldots, \overline{Y}_q$ be antiholomrphic vector fields.

$$\overline{\partial}\omega(\overline{Y},\overline{Y}_1,\ldots,\overline{Y}_q) = \sum_{1}^{p} (-1)^{i+p} \overline{Y}_i \cdot \omega(\overline{Y},\overline{Y}_1\ldots\widehat{\overline{Y}}_i,\ldots,\overline{Y}_q) \\ + \sum_{i< j} (-1)^{i+j+p} \omega(\overline{Y},[\overline{Y}_i,\overline{Y}_j],\overline{Y}_1\ldots\widehat{\overline{Y}}_i,\ldots,\overline{\overline{Y}}_j,\ldots,\overline{Y}_q).$$

Fact:
$$\overline{\partial}^2 = 0$$

Definition:

Let *M* be a complex manifold and let \mathcal{V} be a holomorphic vector bundle on *M*. The (p,q)-Dolbeault cohomology of *M* with coefficients in \mathcal{V} is

 $H^{p,q}(\mathcal{M},\mathcal{V}) = \text{kernel of } \overline{\partial} \text{ on } \mathcal{E}^{p,q}(\mathcal{V})/\text{image of } \overline{\partial} \text{ from } \mathcal{E}^{p,q-1}(\mathcal{V}).$

DOLBEAULT COHOMOLOGY

Assume that $\mathcal{V} \to M$ is a holomorphic vector bundle over a complex manifold. Let $\mathcal{E}^{p,q}(\mathcal{V})$ be the space of \mathcal{V} -valued diff. forms of type (p,q), i.e. the space of smooth sections of $\mathcal{V} \otimes \wedge^p(\mathcal{T}^{*(1,0)}(M)) \otimes \wedge^q(\mathcal{T}^{*(0,1)}(M))$.

The Dolbeault operator $\overline{\partial}: \mathcal{E}^{p,q}(\mathcal{V}) \to \mathcal{E}^{p,q+1}(\mathcal{V})$ is defined as follows. Let X_1, \ldots, X_p be holomorphic vector fields and let $\overline{Y}_1, \ldots, \overline{Y}_q$ be antiholomrphic vector fields.

$$\overline{\partial}\omega(\overline{Y},\overline{Y}_1,\ldots,\overline{Y}_q) = \sum_{1}^{p} (-1)^{i+p} \overline{Y}_i \cdot \omega(\overline{Y},\overline{Y}_1\ldots\widehat{\overline{Y}}_i,\ldots,\overline{Y}_q) \\ + \sum_{i< j} (-1)^{i+j+p} \omega(\overline{Y},[\overline{Y}_i,\overline{Y}_j],\overline{Y}_1\ldots\widehat{\overline{Y}}_i,\ldots,\widehat{\overline{Y}}_j,\ldots,\overline{Y}_q).$$

Fact: $\overline{\partial}^2 = 0$.

Definition:

Let *M* be a complex manifold and let \mathcal{V} be a holomorphic vector bundle on *M*. The (p, q)-Dolbeault cohomology of *M* with coefficients in \mathcal{V} is

 $H^{p,q}(M,\mathcal{V}) = \text{kernel of } \overline{\partial} \text{ on } \mathcal{E}^{p,q}(\mathcal{V})/\text{image of } \overline{\partial} \text{ from } \mathcal{E}^{p,q-1}(\mathcal{V}).$

Theorem (Hon-Wai Wong)

Let V be a finite dimensional $(q, L_{\mathbb{R}})$ -module. Let V be the G-equivariant holomorphic vector bundle over $G_{\mathbb{R}}/L_{\mathbb{R}}$ attached to V. Then,

- Each cohomology space H^{p,q}(G_R/L_R, V) carries a smooth admissible rep. of G_R.
- ② Under some positivity assumption on the highest weight of *V*, $H^{n,q}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{V}) = 0$ unless $q = s = \dim(K_{\mathbb{R}}/K_{\mathbb{R}} \cap L_{\mathbb{R}})$.
- Under some positivity assumption on the highest weight of V, H^{n,s}(G_R/L_R, V) is non-zero and irreducible.
- *H^{n,s}*(*G*_R/*L*_R, *V*) is the maximal globalization of a cohomologically induced (g, *K*)-module.

Remark: A substantial achievement attained by Hon-Wai was to show that the image of $\overline{\partial}$ is closed. Thus, the cohomology admits a Hausdorff topology. Twenty years earlier W. Schmid proved much of this theorem under the assumption rank $G_{\mathbb{R}}$ = rank $\mathcal{K}_{\mathbb{R}}$ and $\mathcal{L}_{\mathbb{R}}$ is compact.

Specialization to ${\it G}_{\mathbb R}$ connected and compact

- •Let $G_{\mathbb{R}}/L_{\mathbb{R}}$ be an elliptic orbit with complex polarization $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$.
- Let $\mathfrak{h} \subset \mathfrak{l}$ be a Cartan subalgebra of \mathfrak{g} and choose a positive system $\Delta^+(\mathfrak{g},\mathfrak{t})$ so that $\Delta(\mathfrak{u}) \subset \Delta^+(\mathfrak{g},\mathfrak{h})$.

Theorem (Borel-Weil-Bott)

Let V^{λ} be an irreducible representation of $L_{\mathbb{R}}$ with highest weight λ . Assume that λ is Δ^+ -dominant. Then

$$\mathcal{H}^{0,j}(\mathit{G}_{\mathbb{R}}/\mathit{L}_{\mathbb{R}},\mathcal{V}^{\lambda}\otimes\wedge^{\mathsf{top}}\mathfrak{u})=egin{cases} 0 & ext{if } j
eq \ \mathsf{dim}_{\mathbb{C}}(\mathit{G}_{\mathbb{R}}/\mathit{L}_{\mathbb{R}})\ \mathcal{F}^{\lambda} & ext{if } j=\ \mathsf{dim}_{\mathbb{C}}(\mathit{G}_{\mathbb{R}}/\mathit{L}_{\mathbb{R}}) \end{cases}$$

where F^{λ} is an irreducible rep. of $G_{\mathbb{R}}$ with highest weight λ .

• In order to describe the unitary realization of F^{λ} we use Hodge Theory.

Specialization to ${\it G}_{\mathbb R}$ connected and compact

- •Let $G_{\mathbb{R}}/L_{\mathbb{R}}$ be an elliptic orbit with complex polarization $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$.
- Let $\mathfrak{h} \subset \mathfrak{l}$ be a Cartan subalgebra of \mathfrak{g} and choose a positive system $\Delta^+(\mathfrak{g},\mathfrak{t})$ so that $\Delta(\mathfrak{u}) \subset \Delta^+(\mathfrak{g},\mathfrak{h})$.

Theorem (Borel-Weil-Bott)

Let V^{λ} be an irreducible representation of $L_{\mathbb{R}}$ with highest weight λ . Assume that λ is Δ^+ -dominant. Then

$$\mathcal{H}^{0,j}(G_{\mathbb{R}}/L_{\mathbb{R}},\mathcal{V}^{\lambda}\otimes\wedge^{\mathsf{top}}\mathfrak{u})=egin{cases} 0 & ext{if } j
eq \ \mathsf{dim}_{\mathbb{C}}(G_{\mathbb{R}}/L_{\mathbb{R}})\ \mathcal{F}^{\lambda} & ext{if } j=\ \mathsf{dim}_{\mathbb{C}}(G_{\mathbb{R}}/L_{\mathbb{R}}) \end{cases}$$

where F^{λ} is an irreducible rep. of $G_{\mathbb{R}}$ with highest weight λ .

• In order to describe the unitary realization of F^{λ} we use Hodge Theory.

Hodge Theory

 Recall that our compact complex manifold G_ℝ/L_ℝ admits an invariant hermitian metric. Hence we have an orthocomplementation operator

$$\overline{\star}: \mathcal{V} \otimes \wedge^{p}(T^{*}((G_{\mathbb{R}}/L_{\mathbb{R}})_{\mathbb{C}}) \to \mathcal{V}^{h} \otimes \wedge^{2n-p}(T^{*}((G_{\mathbb{R}}/L_{\mathbb{R}})_{\mathbb{C}})$$

where dim_{\mathbb{R}}($G_{\mathbb{R}}/L_{\mathbb{R}}$) = 2*n*.

• If $\mathcal{E}^m(\mathcal{V})$ is the space of \mathcal{V} -values *m*-forms, then $\mathcal{E}^m(\mathcal{V}) = \bigoplus_{p+q=m} \mathcal{E}^{p,q}(\mathcal{V})$. We have

$$\overline{\star}: \mathcal{E}^{p,q} \to \mathcal{E}^{n-p,n-q}.$$

• There is a well-defined positive definite inner product on the space of (p, q)-forms. If $\eta_1, \eta_2 \in \mathcal{E}^{p,q}$, then

$$\langle \eta_1, \eta_2 \rangle = \int_{\mathcal{G}_{\mathbb{R}}/L_{\mathbb{R}}} \eta_1 \wedge \overline{\star} \eta_2.$$

- $\overline{\partial}$ has a formal adjoint operator $\overline{\partial}^*$ that is invariant and the Laplace-Beltrami operator $\Box = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$ is both elliptic and self-adjoint.
- Since \Box is elliptic, $\Box \psi = \mathbf{0} \Rightarrow \psi$ is smooth.
- Since \langle , \rangle is a metric $\Box \psi = 0 \Rightarrow \overline{\partial} \psi = 0$ and $\overline{\partial}^* \psi = 0$.

Definition:

$$\begin{split} L^2_s(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}},\mathcal{L}_{\chi+2\delta(\mathfrak{u})}) &= \{ \text{ square integrable } (0,s) \text{ forms} \} \\ \mathcal{H}^2_s &= \text{ Kernel}(\Box) \cap L^2_s(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}},\mathcal{L}_{\chi+2\delta(\mathfrak{u})}). \end{split}$$

Theorem (Hodge)

Keep the hypothesis of the Borel-Weil-Bott theorem. The map

$$\begin{aligned} \mathcal{H}^2_s &\to H^{0,s}(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}},\mathcal{L}_\chi\otimes\wedge^{top}(\mathfrak{u}))\\ \omega &\mapsto [\omega] \end{aligned}$$

is an isomorphism.

Remark:

• We know that harmonic forms are closed forms, so the map is well-defined.

O To prove that the map is surjective, one observes that □ is self-adjoint and hence (Kernel(□))[⊥] = Image(□).

Definition:

$$\begin{split} L^2_s(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}},\mathcal{L}_{\chi+2\delta(\mathfrak{u})}) &= \{ \text{ square integrable } (0,s) \text{ forms} \} \\ \mathcal{H}^2_s &= \text{ Kernel}(\Box) \cap L^2_s(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}},\mathcal{L}_{\chi+2\delta(\mathfrak{u})}). \end{split}$$

Theorem (Hodge)

Keep the hypothesis of the Borel-Weil-Bott theorem. The map

$$\begin{aligned} \mathcal{H}^2_s &\to H^{0,s}(G_{\mathbb{R}}/L_{\mathbb{R}},\mathcal{L}_\chi\otimes\wedge^{top}(\mathfrak{u}))\\ \omega &\mapsto [\omega] \end{aligned}$$

is an isomorphism.

Remark:

• We know that harmonic forms are closed forms, so the map is well-defined.

O To prove that the map is surjective, one observes that □ is self-adjoint and hence (Kernel(□))[⊥] = Image(□).

Definition:

$$\begin{split} L^2_s(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}},\mathcal{L}_{\chi+2\delta(\mathfrak{u})}) &= \{ \text{ square integrable } (0,s) \text{ forms} \} \\ \mathcal{H}^2_s &= \text{ Kernel}(\Box) \cap L^2_s(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}},\mathcal{L}_{\chi+2\delta(\mathfrak{u})}). \end{split}$$

Theorem (Hodge)

Keep the hypothesis of the Borel-Weil-Bott theorem. The map

$$\begin{aligned} \mathcal{H}^2_s &\to H^{0,s}(G_{\mathbb{R}}/L_{\mathbb{R}},\mathcal{L}_\chi\otimes\wedge^{top}(\mathfrak{u}))\\ \omega &\mapsto [\omega] \end{aligned}$$

is an isomorphism.

Remark:

- **()** We know that harmonic forms are closed forms, so the map is well-defined.
- O To prove that the map is surjective, one observes that □ is self-adjoint and hence (Kernel(□))[⊥] = Image(□).

Is it possible to use an analogue construction in the non-compact case?

Lemma:

Let $G_{\mathbb{R}}/L_{\mathbb{R}}$ be an elliptic orbit with complex polarization $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$ so that $\mathcal{T}^{0,1}(G_{\mathbb{R}}/L_{\mathbb{R}}) \simeq \mathfrak{u}$. Then,

- $G_{\mathbb{R}}/L_{\mathbb{R}}$ has an invariant (possibly indefinite) hermitian metric. The metric can be defined in terms of the Killing form.
- **2** If $L_{\mathbb{R}}$ is compact, then $G_{\mathbb{R}}/L_{\mathbb{R}}$ has a positive definite invariant metric.

Proof. Let *B* be the Killing form on \mathfrak{g} . Set

$$\langle \xi, \eta \rangle_{\text{inv}} = B(\xi, \overline{\eta}) \text{ for } \xi, \eta \in \mathfrak{u} \simeq \mathcal{T}_e^{0,1}(G_{\mathbb{R}}/L_{\mathbb{R}}).$$

As *B* is nondegenerate on g and on \mathfrak{l} , it is nondegenerate on $(\mathfrak{l})^{\perp} = \mathfrak{u} + \overline{\mathfrak{u}}$. Hence \langle, \rangle_{inv} is a nondegerate hermitian form on \mathfrak{u} . Since \langle, \rangle_{inv} is $\mathcal{L}_{\mathbb{R}}$ -invariant, there is a well-defined metric on $\mathcal{T}^*(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}})_{\mathbb{C}}$. The signature is (a, b) with $a = \dim(\mathfrak{p} \cap \mathfrak{l}^{\perp})$ and $b = \dim(\mathfrak{k} \cap \mathfrak{l}^{\perp})$.

When $L_{\mathbb{R}}$ is compact, $-B(\xi, \theta \overline{\eta})$ is $L_{\mathbb{R}}$ -invariant and induces a positive metric $\langle , \rangle_{\text{pos}}$ on $T(G_{\mathbb{R}}/L_{\mathbb{R}})_{\mathbb{C}}$.

Is it possible to use an analogue construction in the non-compact case?

Lemma:

Let $G_{\mathbb{R}}/L_{\mathbb{R}}$ be an elliptic orbit with complex polarization $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$ so that $\mathcal{T}^{0,1}(G_{\mathbb{R}}/L_{\mathbb{R}}) \simeq \mathfrak{u}$. Then,

- G_ℝ/L_ℝ has an invariant (possibly indefinite) hermitian metric. The metric can be defined in terms of the Killing form.
- **2** If $L_{\mathbb{R}}$ is compact, then $G_{\mathbb{R}}/L_{\mathbb{R}}$ has a positive definite invariant metric.

Proof. Let B be the Killing form on \mathfrak{g} . Set

$$\langle \xi, \eta \rangle_{\mathsf{inv}} = B(\xi, \overline{\eta}) \text{ for } \xi, \eta \in \mathfrak{u} \simeq T_e^{0,1}(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}}).$$

As *B* is nondegenerate on \mathfrak{g} and on \mathfrak{l} , it is nondegenerate on $(\mathfrak{l})^{\perp} = \mathfrak{u} + \overline{\mathfrak{u}}$. Hence \langle, \rangle_{inv} is a nondegerate hermitian form on \mathfrak{u} . Since \langle, \rangle_{inv} is $\mathcal{L}_{\mathbb{R}}$ -invariant, there is a well-defined metric on $\mathcal{T}^*(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}})_{\mathbb{C}}$. The signature is (a, b) with $a = \dim(\mathfrak{p} \cap \mathfrak{l}^{\perp})$ and $b = \dim(\mathfrak{k} \cap \mathfrak{l}^{\perp})$. When $\mathcal{L}_{\mathbb{R}}$ is compact, $-B(\xi, \theta \overline{\eta})$ is $\mathcal{L}_{\mathbb{R}}$ -invariant and induces a positive metric \langle, \rangle_{pos} on $\mathcal{T}(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}})_{\mathbb{C}}$.

STRONGLY HARMONIC FORMS

• The formal adjoint of $\overline{\partial}$ satisfies

$$\langle \overline{\partial} \eta_1, \eta_2 \rangle_{\mathsf{inv}} = \int_{\mathcal{G}_{\mathbb{R}}/L_{\mathbb{R}}} \langle \overline{\partial} \eta_1(x), \eta_2(x) \rangle_{\mathsf{inv}} = \int_{\mathcal{G}_{\mathbb{R}}/L_{\mathbb{R}}} \langle \eta_1(x), \overline{\partial}^* \eta_2(x) \rangle_{\mathsf{inv}} = \langle \eta_1, \overline{\partial}^* \eta_2 \rangle_{\mathsf{inv}}$$

for compactly supported forms.

• The Laplace-Beltrami operator, $\Box = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$, is usually not elliptic. Moreover, $\Box \eta = 0 \Rightarrow \overline{\partial} \eta = 0$.

Definition:

A (0, p)-form η on $G_{\mathbb{R}}/L_{\mathbb{R}}$ is strongly harmonic if $\overline{\partial}\eta = 0$ and $\overline{\partial}^*\eta = 0$. We let $\mathcal{H}_p(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi})$ denote the space of strongly harmonic forms of type (0, p).

The Hilbert Space

Begin with the positive definite hermitian form $\langle \xi, \eta \rangle_{\text{pos}} = -B(\xi, \theta \overline{\eta})$ on $\mathfrak{u} + \overline{\mathfrak{u}} \simeq (\mathcal{T}_{eL_{\mathbb{R}}}(G_{\mathbb{R}}/L_{\mathbb{R}}))_{\mathbb{C}}$. As $\langle , \rangle_{\text{pos}}$ is not $L_{\mathbb{R}}$ -invariant we can not simply translate to an arbitrary tangent space by simply defining $\langle \ell_x \xi, \ell_x \eta \rangle_{\text{pos}} = \langle \xi, \eta \rangle_{\text{pos}}$.

Proposition:

Write $\mathfrak{l}_{\mathbb{R}}^{\perp} = \{\xi \in \mathfrak{g}_{\mathbb{R}} : B(\xi, \eta) = 0 \text{ for all } \eta \in \mathfrak{l}_{\mathbb{R}}\}.$ Then

 $\mathcal{G}_{\mathbb{R}} = \mathcal{K}_{\mathbb{R}} \exp(\mathfrak{p}_{\mathbb{R}} \cap \mathfrak{l}_{\mathbb{R}}^{\perp}) \exp(\mathfrak{p}_{\mathbb{R}} \cap \mathfrak{l}_{\mathbb{R}}).$

The positive metric on the tangent space at $xL_{\mathbb{R}}$ given by

$$\langle \ell_{\kappa(x)\exp(X(x))}(\xi), \ell_{\kappa(x)\exp(X(x))}(\eta) \rangle_{\mathsf{pos}}$$

is well-defined and $K_{\mathbb{R}}$ -invariant.

Definition:

For smooth compactly supported forms set

$$\langle \omega_1, \omega_2 \rangle_{\text{pos,glob}} = \int_{G_{\mathbb{R}}/L_{\mathbb{R}}} \langle \omega_1(\kappa(x) \exp(x)), \omega_2(\kappa(x) \exp(x)) \rangle_{\text{pos}}$$

The Hilbert Space

Begin with the positive definite hermitian form $\langle \xi, \eta \rangle_{\text{pos}} = -B(\xi, \theta \overline{\eta})$ on $\mathfrak{u} + \overline{\mathfrak{u}} \simeq (\mathcal{T}_{eL_{\mathbb{R}}}(G_{\mathbb{R}}/L_{\mathbb{R}}))_{\mathbb{C}}$. As $\langle , \rangle_{\text{pos}}$ is not $L_{\mathbb{R}}$ -invariant we can not simply translate to an arbitrary tangent space by simply defining $\langle \ell_x \xi, \ell_x \eta \rangle_{\text{pos}} = \langle \xi, \eta \rangle_{\text{pos}}$.

Proposition:

Write $\mathfrak{l}_{\mathbb{R}}^{\perp} = \{\xi \in \mathfrak{g}_{\mathbb{R}} : B(\xi, \eta) = 0 \text{ for all } \eta \in \mathfrak{l}_{\mathbb{R}}\}.$ Then

 $\mathcal{G}_{\mathbb{R}} = \mathcal{K}_{\mathbb{R}} \exp(\mathfrak{p}_{\mathbb{R}} \cap \mathfrak{l}_{\mathbb{R}}^{\perp}) \exp(\mathfrak{p}_{\mathbb{R}} \cap \mathfrak{l}_{\mathbb{R}}).$

The positive metric on the tangent space at $x \mathcal{L}_{\mathbb{R}}$ given by

$$\langle \ell_{\kappa(x)\exp(X(x))}(\xi), \ell_{\kappa(x)\exp(X(x))}(\eta) \rangle_{\mathsf{pos}}$$

is well-defined and $K_{\mathbb{R}}$ -invariant.

Definition:

For smooth compactly supported forms set

$$\langle \omega_1, \omega_2 \rangle_{\mathsf{pos},\mathsf{glob}} = \int_{\mathcal{G}_{\mathbb{R}}/L_{\mathbb{R}}} \langle \omega_1(\kappa(x) \exp(x)), \omega_2(\kappa(x) \exp(x)) \rangle_{\mathsf{pos}}$$

INDEFINITE QUANTIZATION

Define $L_2^{0,p}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi})$: completion of compactly supported smooth (0, p)-forms with respect to $\langle, \rangle_{\text{pos,glob}}$.

Definition:

The L₂-strongly harmonic space is

 $\mathcal{H}_2^s(\mathcal{G}_\mathbb{R}/L_\mathbb{R},\mathcal{L}_\chi)=\{\omega\in L_2^{(0,s)}(\mathcal{G}_\mathbb{R}/L_\mathbb{R},\mathcal{L}_\chi):\overline{\partial}\omega=0 \text{ and } \overline{\partial}^*\omega=0 \text{ as distribution } \}$

Remark: For smoothly compactly supported forms set

$$\langle \omega_1, \omega_2 \rangle_{\text{inv,glob}} = \int_{\mathcal{G}_{\mathbb{R}}/L_{\mathbb{R}}} \langle \omega_1(x), \omega_2(x) \rangle_{\text{inv}}.$$

A relevant fact is that the hermitian form $\langle, \rangle_{\text{inv,glob}}$ is bounded above by $\langle, \rangle_{\text{pos,glob}}$. Hence, $\mathcal{H}_2^s(\mathcal{G}_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi})$ has an invariant possible indefinite hermitian form.

INDEFINITE QUANTIZATION

Define $L_2^{0,p}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi})$: completion of compactly supported smooth (0, p)-forms with respect to $\langle, \rangle_{\text{pos,glob}}$.

Definition:

The L₂-strongly harmonic space is

 $\mathcal{H}_2^s(\mathcal{G}_\mathbb{R}/L_\mathbb{R},\mathcal{L}_\chi)=\{\omega\in L_2^{(0,s)}(\mathcal{G}_\mathbb{R}/L_\mathbb{R},\mathcal{L}_\chi):\overline{\partial}\omega=0 \text{ and } \overline{\partial}^*\omega=0 \text{ as distribution } \}.$

Remark: For smoothly compactly supported forms set

$$\langle \omega_1, \omega_2 \rangle_{\text{inv,glob}} = \int_{\mathcal{G}_{\mathbb{R}}/L_{\mathbb{R}}} \langle \omega_1(x), \omega_2(x) \rangle_{\text{inv}}.$$

A relevant fact is that the hermitian form $\langle, \rangle_{inv,glob}$ is bounded above by $\langle, \rangle_{pos,glob}$. Hence, $\mathcal{H}_2^s(\mathcal{G}_{\mathbb{R}}/L_{\mathbb{R}},\mathcal{L}_{\chi})$ has an invariant possible indefinite hermitian form.

INDEFINITE QUANTIZATION

Define $L_2^{0,p}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi})$: completion of compactly supported smooth (0, p)-forms with respect to $\langle, \rangle_{\text{pos,glob}}$.

Definition:

The L₂-strongly harmonic space is

 $\mathcal{H}_2^s(\mathcal{G}_\mathbb{R}/L_\mathbb{R},\mathcal{L}_\chi)=\{\omega\in L_2^{(0,s)}(\mathcal{G}_\mathbb{R}/L_\mathbb{R},\mathcal{L}_\chi):\overline{\partial}\omega=0 \text{ and } \overline{\partial}^*\omega=0 \text{ as distribution } \}.$

Remark: For smoothly compactly supported forms set

$$\langle \omega_1, \omega_2
angle_{\operatorname{inv,glob}} = \int_{\mathcal{G}_{\mathbb{R}}/L_{\mathbb{R}}} \langle \omega_1(x), \omega_2(x)
angle_{\operatorname{inv}}.$$

A relevant fact is that the hermitian form $\langle, \rangle_{\text{inv,glob}}$ is bounded above by $\langle, \rangle_{\text{pos,glob}}$. Hence, $\mathcal{H}_2^s(\mathcal{G}_{\mathbb{R}}/\mathcal{L}_{\mathbb{R}}, \mathcal{L}_{\chi})$ has an invariant possible indefinite hermitian form.

Indefinite Harmonic Theory (Rawnsley-Schmid-Wolf)

There is a satisfactory quantization procedure if the following hold.

- \mathcal{H}_2^s is nonzero.
- The image of the quotient map q : H^s₂(G_ℝ/L_ℝ, L_χ) → H^{0,s}(G_ℝ/L_ℝ, L_χ) contains all K-finite cohomology classes.
- **③** The kernel of q coincides with the radical of $\langle, \rangle_{\text{inv,glob.}}$.
- $\langle, \rangle_{\text{inv, glob}}$ is positive semidefinite on \mathcal{H}_2^s .

$$\overline{\mathcal{H}_2^s} = \mathcal{H}_2^s / \{ \mathsf{nullspace of } \langle, \rangle_{\mathsf{inv,glob}} \}$$

is complete with respect to $\langle, \rangle_{inv,glob}$.

Theorem (Rawnsley-Schmid-Wolf)

Assume that $G_{\mathbb{R}}/L_{\mathbb{R}}$ is semisimple symmetric and that the fibrations $G_{\mathbb{R}}/(L_{\mathbb{R}} \cap K_{\mathbb{R}}) \to G_{\mathbb{R}}/K_{\mathbb{R}}$ and $G_{\mathbb{R}}/(L_{\mathbb{R}} \cap K_{\mathbb{R}}) \to G_{\mathbb{R}}/L_{\mathbb{R}}$ are holomorphic. Under some positivity assumption on χ the quantization procedure holds and $(\mathcal{H}_{2}^{s}, \langle, \rangle_{\text{inv, glob}})$ is the unitary globalization of $H^{0,s}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi})_{K-\text{finite}}$.

- The holomorphicity assumptions imply that the G_ℝ-rep. on H^{0,s}(G_ℝ/L_R, L_χ) is a highest weight module (not every highest weight module arise this way.)
- The holomorphicity assumptions are used to build explicit and very special *K*-finite strongly harmonic forms.
- The authors use geometric arguments to conclude that the representations are unitarizable and to build the unitary globalization.

Theorem (Rawnsley-Schmid-Wolf)

Assume that $G_{\mathbb{R}}/L_{\mathbb{R}}$ is semisimple symmetric and that the fibrations $G_{\mathbb{R}}/(L_{\mathbb{R}} \cap K_{\mathbb{R}}) \to G_{\mathbb{R}}/K_{\mathbb{R}}$ and $G_{\mathbb{R}}/(L_{\mathbb{R}} \cap K_{\mathbb{R}}) \to G_{\mathbb{R}}/L_{\mathbb{R}}$ are holomorphic. Under some positivity assumption on χ the quantization procedure holds and $(\mathcal{H}_{2}^{s}, \langle, \rangle_{\text{inv, glob}})$ is the unitary globalization of $H^{0,s}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi})_{K-\text{finite}}$.

- The holomorphicity assumptions imply that the G_R-rep. on H^{0,s}(G_R/L_R, L_χ) is a highest weight module (not every highest weight module arise this way.)
- The holomorphicity assumptions are used to build explicit and very special *K*-finite strongly harmonic forms.
- The authors use geometric arguments to conclude that the representations are unitarizable and to build the unitary globalization.

Theorem

Let $G_{\mathbb{R}}/L_{\mathbb{R}}$ be an elliptic co-adjoint orbit. Under some positivity assumptions on χ , every K-finite cohomology class in $H^{0,s}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi} \otimes \wedge^{top}(\mathfrak{u}))$ admits a strongly harmonic representative.

Remarks:

The representatives are explicitly given by integral formulae. This was done in the 90's; the equal rank case jointly with Knapp and Zierau. The idea of the construction comes from Complex Analysis.

Recall that for the unit ball in \mathbb{R}^n , the Poisson transform maps functions on the boundary of the ball to harmonic functions on the ball. For the ball in \mathbb{C}^n the Szegö map transforms functions on the boundary to holomorphic functions on the ball. For Riemannian Symmetric spaces the Poisson transform produces harmonic functions with respect to the Euclidean metric.

Theorem

Let $G_{\mathbb{R}}/L_{\mathbb{R}}$ be an elliptic co-adjoint orbit. Under some positivity assumptions on χ , every K-finite cohomology class in $H^{0,s}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi} \otimes \wedge^{top}(\mathfrak{u}))$ admits a strongly harmonic representative.

Remarks:

The representatives are explicitly given by integral formulae. This was done in the 90's; the equal rank case jointly with Knapp and Zierau. The idea of the construction comes from Complex Analysis.

Recall that for the unit ball in \mathbb{R}^n , the Poisson transform maps functions on the boundary of the ball to harmonic functions on the ball. For the ball in \mathbb{C}^n the Szegö map transforms functions on the boundary to holomorphic functions on the ball. For Riemannian Symmetric spaces the Poisson transform produces harmonic functions with respect to the Euclidean metric.

- We place H^{0,s}(G_ℝ/L_ℝ, L_χ ⊗ ∧^{top}(u))_{K-finite} as the unique irred. quotient in an induced module ind^{G_ℝ}_{P_ℝ}(δ_M, ρ_L, 1). We define a kind of Szegö map from ind^{G_ℝ}_{P_ℝ}(δ_M, ρ_L, 1) to the space of strongly harmonic forms. When passing to cohomology the map is onto H^{0,s}(G_ℝ/L_ℝ, L_χ ⊗ ∧^{top}(u))_{K-finite}. We write the strongly harmonic representative as Sf with f ∈ ind^{G_ℝ}_{P_ℝ}(δ_M, ρ_L, 1).
- A similar construction for producing strongly harmonic forms holds for representation in the discrete series.

Theorem (B.-Zierau)

Assume $L_{\mathbb{R}}$ is the fixed-point of an involution and that real ranks of $G_{\mathbb{R}}$ and $L_{\mathbb{R}}$ coincide. Under some positivity assumption of χ , the invariant form $\langle, \rangle_{\text{inv,glob}}$ is not identically zero on $\mathcal{H}_2^s(G_{\mathbb{R}}/L_{\mathbb{R}},\mathcal{L}_{\chi})$. The completion of $\overline{\mathcal{H}_2^s} = \mathcal{H}_2^s/\{$ nullspace of $\langle, \rangle_{\text{inv,glob}}\}$ with respect to $\langle, \rangle_{\text{inv,glob}}$ is the unitarity globalization of $H^{n,s}(G_{\mathbb{R}}/L_{\mathbb{R}},\mathcal{L}_{\chi})_{K-\text{finite}}$. In particular, the image of S consists of strongly harmonic square integrable forms.

- We place H^{0,s}(G_ℝ/L_ℝ, L_χ ⊗ ∧^{top}(u))_{K-finite} as the unique irred. quotient in an induced module ind^{G_ℝ}_{P_ℝ}(δ_M, ρ_L, 1). We define a kind of Szegö map from ind^{G_ℝ}_{P_ℝ}(δ_M, ρ_L, 1) to the space of strongly harmonic forms. When passing to cohomology the map is onto H^{0,s}(G_ℝ/L_ℝ, L_χ ⊗ ∧^{top}(u))_{K-finite}. We write the strongly harmonic representative as Sf with f ∈ ind^{G_ℝ}_{P_ℝ}(δ_M, ρ_L, 1).
- A similar construction for producing strongly harmonic forms holds for representation in the discrete series.

Theorem (B.-Zierau)

Assume $L_{\mathbb{R}}$ is the fixed-point of an involution and that real ranks of $G_{\mathbb{R}}$ and $L_{\mathbb{R}}$ coincide. Under some positivity assumption of χ , the invariant form $\langle, \rangle_{\text{inv,glob}}$ is not identically zero on $\mathcal{H}_2^s(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi})$. The completion of $\overline{\mathcal{H}_2^s} = \mathcal{H}_2^s/\{$ nullspace of $\langle, \rangle_{\text{inv,glob}}\}$ with respect to $\langle, \rangle_{\text{inv,glob}}$ is the unitarity globalization of $\mathcal{H}^{n,s}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi})_{K-\text{finite.}}$ In particular, the image of S consists of strongly harmonic square integrable forms.

Recall:

- Each K-finite cohomology class admits a representative of the form Sf with $f \in \operatorname{ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}(\delta_{M}, \rho_{L}, 1).$
- There is an intertwining map A_{ρ_L} from $\operatorname{ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}(\delta_M, \rho_L, 1)$ to its hermitian dual. The hermitian form $\langle f, A_{\rho_L} f \rangle_{PS}$ descends to a hermitian form on the unique irred. quotient. As the quotient is known to be unitarizable the resulting form is definite.

Theorem (B. -Zierau)

Every K-finite cohomology class in $H^{0,s}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi} \otimes \wedge^{\text{top}}(\mathfrak{u}))$ admits a representative Sf so that $\langle Sf, Sf \rangle_{\text{inv}} \in L^1(G_{\mathbb{R}}/L_{\mathbb{R}})$. Moreover, there is a constant C so that $\langle Sf, Sf \rangle_{\text{inv,glob}} = C \langle f, A_{\rho_L}f \rangle_{PS}$.

Recall:

- Each K-finite cohomology class admits a representative of the form Sf with $f \in \operatorname{ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}(\delta_{M}, \rho_{L}, 1).$
- There is an intertwining map A_{ρ_L} from $\operatorname{ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}(\delta_M, \rho_L, 1)$ to its hermitian dual. The hermitian form $\langle f, A_{\rho_L} f \rangle_{PS}$ descends to a hermitian form on the unique irred. quotient. As the quotient is known to be unitarizable the resulting form is definite.

Theorem (B. -Zierau)

Every *K*-finite cohomology class in $H^{0,s}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi} \otimes \wedge^{\text{top}}(\mathfrak{u}))$ admits a representative Sf so that $\langle Sf, Sf \rangle_{\text{inv}} \in L^1(G_{\mathbb{R}}/L_{\mathbb{R}})$. Moreover, there is a constant *C* so that $\langle Sf, Sf \rangle_{\text{inv,glob}} = C \langle f, A_{\rho_L}f \rangle_{PS}$.

Remarks:

- As $\langle Sf, Sf \rangle_{inv} \in L^1(G_{\mathbb{R}}/L_{\mathbb{R}})$, we have a well defined $\langle Sf, Sf \rangle_{inv,glob}$ without the need of an auxiliary metric.
- The comparison with the hermitian form on the Langlands quotient suggests that $\langle,\rangle_{\text{inv,glob}}$ is the metric that gives the unitary globalization.
- If C is non-zero the theorem says that $\{K$ -finite image of $S\}/nullspace$ of $\langle, \rangle_{inv,glob}$ admits a definite hermitian form. The completion is the unitary globalization of the underlying (\mathfrak{g}, K) -module.
- The constant *C* is related to the realization of the discrete series of *M*. [When $L_{\mathbb{R}}$ is compact, $G_{\mathbb{R}}/L_{\mathbb{R}}$ admits two invariant metrics , $\langle,\rangle_{\text{inv,glob}}$ and $\langle,\rangle_{\text{pos,glob}}$. The constant *C* comes from comparing these metrics.] Schmid used $\langle,\rangle_{\text{pos,glob}}$ to realize rep. in the discrete series as a L^2 -harmonic space. *We need an indefinite quatization theory for rep. in the discrete series.*

A DIFFERENT APPROACH

- By a result of Harish-Chandra every admissible (g, K)-module that is finitely generated is the Harish-Chandra module of a representation (π, V) of G_ℝ. There is no "uniqueness" in this statement. Indeed, by work of Casselman-Wallach and Schmid given (π, V) admissible G_ℝ-rep. on a reflexive Banach space, then (V^ω, π^ω), (V[∞], π[∞]), (V^{-∞}, π^{-∞}), (V^{-ω}, π^{-ω}) (analytic, smooth, distribution, hyperfunctions) are smooth rep. all infinitesimally equivalent to π.
- A different approach to finding the unitary globalization of $H^{n,s}(G_{\mathbb{R}}/L_{\mathbb{R}},\mathcal{L}_{\chi})_{K-\text{finite}}$ is to identify the minimal globalization and to define an invariant positive definite hermitian form on it.
- The minimal globalization of $H^{n,s}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}_{\chi})_{K-\text{finite}}$ is the topological dual of the maximal globalization i.e Dolbeault cohomology space. Tim Bratten proved that the minimal globalization is given by $H^{0,n-s}_{c}(G_{\mathbb{R}}/L_{\mathbb{R}}, \mathcal{L}^{*}_{\chi})$ compactly supported cohomology.

- The space of invariant hermitian forms on H^{0,n-s}_c(G_ℝ/L_ℝ, L^{*}_χ) is the space of G_ℝ-intertwining maps from H^{0,n-s}_c(G_ℝ/L_ℝ, L^{*}_χ) to its hermitian dual, H^{n,s}(G_ℝ/L_ℝ, L^h_χ).
 Vogan identifies this space with the diag(G_ℝ × G_ℝ)-invariant real forms on H^{(n,n)(s,s)}(G_ℝ/L_ℝ × G_ℝ/L_ℝ, F_χ) with F induced by the invariant hermitian pairings on L_χ. Under our assumptions this is a one dimensional space.
- Vogan propose to describe geometrically this diag (G_ℝ × G_ℝ)-invariant real form on H^{(n,n)(s,s)}(G_ℝ/L_ℝ × G_ℝ/L_ℝ, F_χ). This form is to be thought of as a reproducing kernel.