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In this paper we give a brief survey of the basic results on B-N pairs and par-
abolic subgroups as seen in Bourbaki and Humphreys. We also describe two
applications of the theory of parabolics subgroups: the Bala-Carter classification of
unipotent orbits in simple algebraic groups, and an extension of that theory to the
classification of nilpotent orbits in real reductive Lie algebras. The second applica-
tion is part of the author’s doctoral thesis under the supervision of Prof. Donald
R. King. (in preparation)

1. Historical Remarks (see Bourbaki and K. Brown )

At the time of the publication of Bruhat’s seminal work on the representation of
complex Lie groups, in 1954, mathematicians knew how to associate to a Lie group
G, a finite reflection group W , called the Weyl group. It is given by W = N/T ,
where T is a maximal torus and N its normalizer. Some were also aware of a certain
subgroup B ⊂ G that plays a fundamental role in the work of Borel. The Bruhat
decomposition G = BWB provided a connection between B and W that was not
yet known. More precisely he proved that the set B \ G/B of double cosets was
finite and in 1-1 correspondence with the finite reflection group W .
Soon after, Chevalley generalized the above results for not only the classical groups
but also for the exceptional ones. Moreover he worked over an arbitrary field. In a
1962 paper, Tits gave an axiomatic treatment of Chevalley’s work. Later, in 1964,
he and Matsumoto discovered, independently, that the Weyl group was in fact a
Coxeter group. In his work on Buildings Tits explained how a group with a BN-
pair gave rise to a geometry satisfying his axioms for buildings. Finally, Feit and
Higman proved that the only ”unusual” Weyl group that can arise from a finite
group with with BN-pair is I2(8), the dihedral group of oder 16.
This theory has been used extensively over the last decades to develop the repre-
sentation theory of groups. In a recent book Knapp and Vogan use a version of it
to study Cohomological Induction.
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2. Tits Systems

Let G be a group and B a subgroup of G. Then the group B × B acts on G by
(b, b′).g = bgb′−1 for b, b′ ∈ B and g ∈ G. The orbits of B × B in G are the sets
BgB. They form a partition of G; the corresponding quotient space is denoted by
B \G/B.
Assume that G is generated by B and an other subgroup N such that T = B ∩N
is normal in N . Let W = N/T and suppose that W is generated by a subset S
consisting of involutions (elements of order 2). Then we have

Definition. (G,B,N,S) is a Tits System, provided that the following axioms are
satisfied.

T1 . If ρ ∈ S, σ ∈W then ρBσ ⊂ BσB ∪BρσB
T2 . If ρ ∈ S then ρBρ �= B

W is usually called the Weyl group of the Tits system, and B, or any of its
conjugates in G, a Borel subgroup of G. The cardinal of S is called the rank of
the system. Observe that any element of W is a class modulo T , hence a subset of
G. Therefore the products of the form BwB for w ∈ W make sense. Moreover for
any subset A of W we define BAB =

⋃
w∈A

BwB.

1. An example
Let G = GL(2,R) be the set of 2 × 2 invertible real matrices and let (e1, e2) be
the canonical basis of R

2. Finally Let B ⊂ G be the group of upper triangular
matrices in G. Denote by N the subgroup of G consisting of matrices with exactly
one non zero entry in each row and each column. N is usually called the monomial
group. Then B stabilizes the one dimensional space generated by e1 while N is
the stabilizer of the lines Re1 and Re2. More precisely an element of N permutes
the lines Rei. It follows that N acts as a group of permutations on two letters.
Hence we have a surjective homomorphism from N onto S2 the symmetric group
of 2 letters. The kernel of this homomorphism is exactly the diagonal subgroup of
G. It is T = B ∩N . Clearly under conjugation N normalizes T and W = N/T can
be identified with S2. Furthermore we have

(
0 ∗
∗ 0

) (
∗ ∗
0 ∗

) (
0 ∗
∗ 0

)
=

(
∗ 0
∗ ∗

)
.

In other words the group < B,N > contains the set of lower triangular matrices.
From linear algebra we know that every invertible matrices decomposes into a
product of a lower triangular matrix and an upper triangular one. Hence G =<
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B,N >. Also the above product shows that the axiom T2 is verified. It remains
to check T1. Since the type of matrices involved are so simple and the elements of

W are of two types ,
(

0 ∗
∗ 0

)
or

(
∗ 0
0 ∗

)
, it is easy to check T1 directly.

2. Some properties

Using the above notations define C(w) = BwB, w ∈ W . Then for w, w′ ∈ W and
s, s′ ∈ S we have:

1. C(e) = BeB = B, where e is the identity in G.

2. C(ww′) = Bww′B ⊂ BwBBw′B = C(w).C(w′)

3. C(w−1) = C(w)−1, for

x ∈ C(w−1) ⇐⇒ x = b1wb2 b1, b2 ∈ B ⇐⇒

⇐⇒ x−1 = b−1
2 wb

−1
1 ⇐⇒ x−1 ∈ C(w) ⇐⇒ x ∈ C(w)−1.

4. Axiom T1 implies that C(s)C(w) = B(sBw)B ⊂ C(w) ∪ C(sw). Since
C(sw) ⊂ (s)C(w) and C(s)C(w) is the union of two classes there can only be two
possibilities:

C(s)C(w) =

{C(sw), ifC(w)�⊆C(s)C(w)

C(w)∪C(sw), ifC(w)⊂C(s)C(w)

5. Axiom T2 implies that B �= C(s)C(s). Since s2 = e we have

C(s)C(s) = B ∪ C(s).

Thus B ∪ C(s) is a subgroup of G.

3. Bruhat Decomposition

For I ⊂ S let W
I

=< I >. Define P
I

= BW
I
B. Then we have:

Theorem. If I ⊂ S Then P
I

is a subgroup of G. Furthermore for σ, σ′ ∈ W
BσB = Bσ′B if and only if σ = σ′.

Proof. (See Humphreys)
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As a consequence of the above theorem, G = BWB for I = S.

4. Generators and Relations for W

For the Tits system G(2,R, B,N, S) described in the preceding example, W was
generated by a single element ρ subject to the relation ρ2 = e. If the rank of the
system is 2, then W is homomorphic to an abstract group whose presentation is
< ρ̂1, ρ̂2|ρ̂2i = e = (ρ̂1ρ̂2)m >. In this case W is dihedral. We assume that S
has finite cardinality. By definition a Coxeter group is a group with generators
ρ̂i, 1 ≤ i ≤ l and defining relations (ρ̂i, ρ̂j)m(i,j) = e, where m(i, i) = 1 and
m(i, j) = m(j, i) is a number greater than or equal to 2. Then the following
theorem shows that W is actually a Coxeter group.

Theorem. Let m(i, j) be the order of ρiρj. Let π : Ŵ → W be the canonical
epimorphism, where Ŵ is a Coxeter group. Then π is an isomorphism.

Proof. (See Bourbaki , Humphreys )

The poof of the preceding theorem use the fact that W satisfies an ” exchange
condition”. For σ ∈W we call an expression σ = ρ1 . . . ρk, ρi ∈ S, reduced if k is
as small as possible and we write l(σ) = k. This is the length of σ relative to S. By
convention l(σ) = 0 ⇐⇒ σ = e. The meaning of the exchange condition is made
clear by

lemma. Let σ ∈ W have reduced expression ρi(1) . . . ρi(t). Suppose that l(ρi(0)σ) ≤
l(σ). Then, there exists s, 1 ≤ s ≤ t, such that ρi(o)ρi(1) . . . ρi(s−1) = ρi(1) . . . ρi(s).

Proof. (Humphreys)

5. A Simplicity Criterion

Lemma. Let H be a normal subgroup of G. Then, there is a partition S = I ∪ J
such that I, J commute elementwise and HB = P

I
.

Proof. (Bourbaki, Humphreys)
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Any partition of S into subsets I, J which commute elementwise yields a decompo-
sition of W as a direct product W

I
×W

J
. If no non trivial decomposition of this

sort exists, we say that W is irreducible. A simplicity criterion is expressed by

Theorem. Let W be irreducible, and assume that G is generated by the conjugates
of a normal solvable subgroup U of B, while G = (G,G). Then G/Z ,where Z =⋂
x∈G

xBx−1, is simple (or trivial).

Proof. (Humphreys)

6. Parabolic Subgroups

Sometimes a Tits system is written as (G,B,N). This is justified by:

Lemma. S is precisely the set of those σ ∈ W for which B ∪ BσB is a group (so
(G,B,N) determine S uniquely), and S is a minimal generating set for W .

Proof. (Humphreys)

The subgroups of G containing a Borel subgroup are called parabolic subgroups.
They play a fundamental role in Representation Theory and are classified by:

Theorem.

a) The only subgroups of G containing B are those of the form P
I
,I ⊂ S.

b) If P
I

is conjugate to P
J
, then P

I
= P

J
.

c) NG(P
I
) = P

I
.

d) If W
I
⊂W

J
, Then I ⊂ J .

e) If P
I
⊂ P

J
, Then I ⊂ J .

Proof. (Humphreys)

An obvious consequence of the theorem is that B is self-normalizing inG. Moreover,
the theorem shows that the lattice of subgroups of G containing B is isomorphic to
the lattice of subsets of S ordered by inclusion, or to the lattice of subgroups W

I

of W .
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It is a fact [Humphreys] that the quadruple (G,B,N, S) is a Tits system, where G
is a reductive group, B a Borel subgroup including a maximal torus T , N = NG(T ),
W the Weyl group, S the set of simple reflections corresponding to the base, ∆, of
the root system determined by B. Observe that the rank of the system is equal to
the semisimple rank of G. From now on we will work with that system.

The parabolic subgroups of G containing B (not one of its conjugates) are called
standard parabolic subgroups of G relative to B. They correspond 1-1 to the
2l subsets of ∆. Let g be the Lie algebra of G. Then the Lie algebra of P

I
is

p
I=k⊕

∐
gα

, where k is a Cartan subalgebra of g, α ranges over some set of roots Θ
including the set of positive roots Φ+ and gα the root space corresponding to α.
The Lie algebra of a parabolic subgroup is called a parabolic subalgebra that is a
subalgebra containing the Lie algebra of a Borel subgroup. The following theorem
tells us how to determine Θ.

Theorem.

a) Each parabolic subgroup of G is conjugate to one and only one subgroup P
I
,

where I ⊂ ∆.

b) The roots of P
I

relative to T are those in Φ+ along with those roots in Φ−

which are Z-linear combinations of I.

Proof. (Humphreys)

Example. Let G = Sl4. Then ∆ = {α1, α2, α3}. For I = {α1, α2} we have

p
I

=




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 ∗




1. Levi Decompositions

Let V be the unipotent part of the radical of P
I
. Let Ψ be the subsystem of roots

spanned by I. Then p
I

= l ⊕ v, where l == k ⊕
∐

α∈Ψ

gα. In fact l is a reductive

subalgebra of g, while v is a nilpotent ideal. Then P
I

is the semidirect product
L.V , where L = Z

G
(S) and S = (

⋂
α∈I

kerα)0 . The corresponding decomposition of

PI as a semidirect product of LV is called a Levi decomposition, and we call L
a Levi factor. In general, such a decomposition exists in an arbitrary connected
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algebraic group when char 0, and any two Levi factors of a parabolic subgroup P
are conjugate under its unipotent radical. However, such decomposition may not
exist in cases where the characteristic is prime.

From the above example we deduce that

l
I

=




∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗




while,

v
I

=




0 0 0 ∗
0 0 0 ∗
0 0 0 ∗
0 0 0 0




7. Applications

1. The Bala-Carter Classification

Let g
C

be a semisimple complex Lie algebra andG
C

its adjoint group. The Jacobson-
Morozov theorem tells us that any nilpotent element X in g

C
can be embedded in

a triple (H,X, Y ) of g
C
, where H is semisimple , Y is nilpotent, with the following

relations:

[H,X] = 2X , [H,Y ] = −2Y , [X,Y ] = H

It is a fact that g
C

=
⊕
jεZ

g(j)
C

where g(j)
C

= {Zεg
C
|[H,Z] = jZ}, and the subalgebra

q =
⊕
jεN

g(j)
C

is a parabolic sub algebra of g
C

with a Levi part l = g(0)
C

and nilradical

u =
⊕

jεN∗
g(j)

C
. Call q the Jacobson-Morosov parabolic subalgebra ofX relative to the

triple (H,X, Y ). Furthermore, any two triples containing X are conjugate under
G

C
. A nilpotent element X is distinguished if the only Levi subalgebra containing

X is g
C

itself. Hence, X is distinguished in any minimal Levi subalgebra containing
it. It turns out that any two minimal Levi subalgebras containing X are conjugate
under GX

C
.
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A parabolic subalgebra with Levi decomposition p = t⊕v is said to be distinguished
if

dim t = dim v
[v,v]

Retaining the above notation we have:

Theorem (Bala, Carter). There is a one-to-one correspondence between nilpo-
tent orbits of g

C
and G-conjugacy classes of pairs (l, p

l
), where l is a Levi subalgebra

of g
C

and p
l
is a distinguished parabolic subalgebra of the semisimple algebra [l, l].

What really makes the correspondence possible is the fact that the orbit of a dis-
tinguished X is uniquely determined by the Jacobson-Morozov q attached to X or
any of its representatives. It is the Richarson orbit attached to q. This fails for
arbitrary orbit.

There is a bijection between unipotent orbits of semisimple algebraic groups and
nilpotent orbits of their Lie algebra. Hence, the above classification is extended to
semisimple algebraic groups.

2. An extension of the Bala Carter theory

We present a new classification of nilpotent orbits of real reductive Lie algebras
under the action of their adjoint group. Let g be a real reductive Lie algebra with
adjoint group G and g

C
its complexification. Also let g = k⊕p be the corresponding

Cartan decomposition of g. Finally, let θ be a Cartan involution of g and σ be the
conjugation of g

C
with regard to g. Then, g

C
= k

C
⊕p

C
where k

C
and p

C
are obtained

by complexifying k and p respectively. Denote by K
C

the connected subgroup of
the adjoint group G

C
of g

C
, with Lie algebra k

C
. We prove that the orbits K

C
.e

are in one-to-one correspondence with the triples of the form (l, q
l
,w), where e

is a non zero nilpotent in p
C
, l is a minimal (θ, σ)-stable Levi subalgebra of g

C

containing e, q
l
is a θ stable parabolic subalgebra of [l, l] and w is a certain L∩K

C

prehomogeneous subspace of q
l
∩ p

C
containing e. L is the connected subgroup of

G
C

with Lie algebra l. Thus, we obtain a classification for real nilpotents G-orbits
in g via the Kostant-Sekiguchi correspondence. This classification generalizes the
one given by P. Bala and R. Carter in 1976, for complex semisimple Lie algebras.
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