Centralizers of Nilpotents and The Bala-Carter Classification

Alfred Gérard Noël University of Massachusetts Boston email: alfred.noel@umb.edu Let $\mathfrak{g}_{\mathbb{C}}$ be a complex semisimple Lie algebra with adjoint group $G_{\mathbb{C}}$ and e a nilpotent element in $\mathfrak{g}_{\mathbb{C}}$.

Let $G_{\mathbb{C}}^e$ centralizer of e in $G_{\mathbb{C}}$. $G_{\mathbb{C}}^e$ is not connected in general. Often it is required to compute the finite group

$$A(e) = \frac{G^e_{\mathbb{C}}}{(G^e_{\mathbb{C}})_{\circ}}$$

where $(G^e_{\mathbb{C}})_{\circ}$ is the identity component.

E. Sommers (1997) gave a unified description of the conjugacy classes of A(e).

A pseudo-Levi subalgebra l of $\mathfrak{g}_{\mathbb{C}}$ is defined to be the centralizer in $\mathfrak{g}_{\mathbb{C}}$ of a semisimple element z of $G_{\mathbb{C}}$. (Notation $l = \mathfrak{g}_{\mathbb{C}}^{z}$)

Pseudo-Levi subgroups L of $G_{\mathbb{C}}$ are of the form $(G_{\mathbb{C}}^z)_{\circ}$ the identity component of the centralizer of z in $G_{\mathbb{C}}$.

Let Z be the center of L in $G_{\mathbb{C}}$ then the group $\frac{Z}{Z_{\mathbb{C}}}$ is cyclic. (Sommers)

A nilpotent element e of $\mathfrak{g}_{\mathbb{C}}$ is called **distinguished** if the conditions $x \in \mathfrak{g}_{\mathbb{C}}$ semisimple and [x, e] = 0 imply that x is in the center of $\mathfrak{g}_{\mathbb{C}}$.

Let $L \subset G_{\mathbb{C}}$ be a pseudo-Levi subgroup with center Z and Lie algebra l a pseudo-Levi subalgebra of $\mathfrak{g}_{\mathbb{C}}$. Given a conjugacy class \overline{c} of A(e), l has the **key property** for (e, \overline{c}) if $e \in l$ and there exits $z \in Z$ such that

- 1. zZ_{\circ} generates the cyclic group $\frac{Z}{Z_{\circ}}$
- 2. $z(G^e_{\mathbb{C}})_{\circ} = \overline{c}$

Moreover if l is a minimal pseudo-Levi subalgebra with the key property for (e, \bar{c}) then e is distinguished in l.

Sommers shows how to build minimal pseudo-Levi subalgebras with the key property for a given pair (e, \bar{c}) .

Theorem (Sommers). There is a bijection Φ between $G_{\mathbb{C}}$ conjugacy classes of pairs (l, e), where l is a pseudo-Levi subalgebra and e is a distinguished nilpotent in l, and $G_{\mathbb{C}}$ conjugacy classes of pair (e, \bar{c}) , where e is a nilpotent element in $\mathfrak{g}_{\mathbb{C}}$ and \bar{c} is a conjugacy class of A(e)

Example. Let $\mathfrak{g}_{\mathbb{C}}$ be $\mathfrak{so}_5(\mathbb{C})$, the complex Lie algebra of 5×5 orthogonal matrices. It is known that its nilpotent classes are parametrized by certain partitions of 5. Consider the class [3,1,1]. A computation shows that the only two pseudo-Levi subalgebras (up to conjugacy) containing a nilpotent e in that class are of the form $\mathfrak{sl}_2(\mathbb{C})$ and $2\mathfrak{sl}_2(\mathbb{C})$. Sommer's Correspondence

$$(e,1) \rightleftharpoons (\mathfrak{sl}_2(\mathbb{C}),e)$$

$$(e,-1) \rightleftharpoons (2\mathfrak{sl}_2(\mathbb{C}),e)$$

In this case $A(e) = \mathbb{Z}_2$.

Sommer's theorem is an extension of the **Bala-Carter** classification which states:

The nilpotent orbits $G_{\mathbb{C}}.e$ of $\mathfrak{g}_{\mathbb{C}}$ are in bijection with $G_{\mathbb{C}}$ conjugacy classes of pairs (l, p_l) where l is a Levi subalgebra of $\mathfrak{g}_{\mathbb{C}}$ in which e is distinguished and p_l a distinguished parabolic subalgebra of [l, l].

In fact (e, 1) always goes to the B-C Levi l.

Our goal is to extend Sommer's result to real reductive Lie groups.

Let \mathfrak{g} be a real reductive Lie algebra with adjoint group G and Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ relative to a Cartan involution Θ .

We complexify \mathfrak{g} to obtain $\mathfrak{g}_{\mathbb{C}} = \mathfrak{k}_{\mathbb{C}} \oplus \mathfrak{p}_{\mathbb{C}}$.

Denote by σ the conjugation of $\mathfrak{g}_{\mathbb{C}}$ with regard to \mathfrak{g} .

Let $K_{\mathbb{C}}$ be the complexification of K the connected subgroup of G with Lie algebra \mathfrak{k} . $K_{\mathbb{C}}$ preserves $\mathfrak{p}_{\mathbb{C}}$ under the adjoint action. Sekiguchi proves that there is a one to one correspondence between nilpotent *G*-orbits in \mathfrak{g} and nilpotent $K_{\mathbb{C}}$ -orbits in $\mathfrak{p}_{\mathbb{C}}$.

Therefore it is reasonable to solve the following problem.

Let e be a nilpotent element in $\mathfrak{p}_{\mathbb{C}}$ and $A_k(e) = \frac{K_{\mathbb{C}}^e}{(K_{\mathbb{C}}^e)_{\circ}}$. Give a unified description of the elements of $A_k(e)$.

A pseudo-Levi subalgebra l of $\mathfrak{g}_{\mathbb{C}}$ is said to be **elliptic** if it is the centralizer in $\mathfrak{g}_{\mathbb{C}}$ of an elliptic element of $K_{\mathbb{C}}$. The connected subgroup L of $G_{\mathbb{C}}$ with Lie algebra l is an elliptic pseudo Levi subgroup of $G_{\mathbb{C}}$. Let Z be the center of L then:

Non trivial Fact:

 $\frac{Z \cap K_{\mathbb{C}}}{(Z \cap K_{\mathbb{C}})_{\circ}}$ is cyclic

A nilpotent element e of $l \cap \mathfrak{p}_{\mathbb{C}}$ is called **noticed** if the conditions $z \in l \cap \mathfrak{k}_{\mathbb{C}}$ semisimple and [z, e] = 0 imply that z is in the center of l.

We can choose e such that it lies in a Kostant-Sekiguchi \mathfrak{sl}_2 -triple $\{x, e, f\}$ that is $x \in \mathfrak{k}_{\mathbb{C}}$, e and f in $\mathfrak{p}_{\mathbb{C}}$, $\sigma(e) = f$. A θ -stable parabolic subalgebra \mathfrak{q} of lis said to be noticed for e if there is a K-S triple in l for which \mathfrak{q} is the sum of the non-negative eigenspaces of ad(x) acting on l.

Given a conjugacy class \overline{c} of $A_k(e)$, l has the **key property** for (e, \overline{c}) if $e \in l$ and there exits $z \in Z \cap K_{\mathbb{C}}$ such that

1.
$$z(Z \cap K_{\mathbb{C}})_{\circ}$$
 generates $\frac{Z \cap K_{\mathbb{C}}}{(Z \cap K_{\mathbb{C}})_{\circ}}$

2.
$$z(K^e_{\mathbb{C}})_{\circ} = \bar{c}$$

Moreover if l is a minimal elliptic pseudo-Levi subalgebra with the key property for (e, \overline{c}) then e is noticed in l. We know how to build minimal eliptic pseudo-Levi subalgebras with the key property for a given pair (e, \bar{c}) .

Theorem (1999). There is a one to one correspondence between $K_{\mathbb{C}}$ -conjugacy classes of pairs (e, \bar{z}) , where e is a nilpotent in $\mathfrak{p}_{\mathbb{C}}$, $\bar{z} \in A_k(e)$ and $K_{\mathbb{C}}$ -conjugacy classes of triples $(l, \mathfrak{q}_l, \mathfrak{w})$ where l is an elliptic pseudo-Levi subalgebra in which e is noticed, \mathfrak{q}_l is a noticed parabolic of l for e, and \mathfrak{w} is a certain prehomogeneous space. **Example 1.** Let $\mathfrak{g} = \mathfrak{sl}_3(\mathbb{R})$. The two non-zero nilpotent orbits of \mathfrak{g} are parametrized by the matrices

$$e_1 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 1 \\ i & 1 & 0 \end{pmatrix}, \ e_2 = \frac{1}{2} \begin{pmatrix} i & 1 & 0 \\ 1 & -i & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

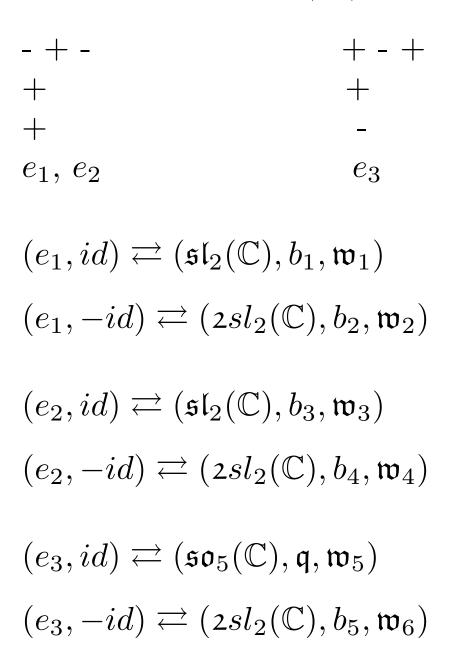
A computation gives:

$$A_k(e_1) = id \text{ and } A_k(e_2) = \mathbb{Z}_2$$

We obtain the following correspondence:

$$(e_1, id) \rightleftharpoons (\mathfrak{sl}_3(\mathbb{C}), b_1, \mathfrak{w}_1)$$
$$(e_2, id) \rightleftharpoons (\mathfrak{sl}_3(\mathbb{C}), b_2, \mathfrak{w}_2)$$
$$(e_2, -id) \rightleftharpoons (\mathfrak{sl}_2(\mathbb{C}) \oplus V, b_3, \mathfrak{w}_3)$$

Example 2. Let $\mathfrak{g} = \mathfrak{so}(3, 2)$. The complex nilpotent orbit [3, 1, 1] splits into three classes e_1, e_2, e_3 in \mathfrak{g} .



This theorem is an extension of the our classification which states:

The nilpotent orbits $K_{\mathbb{C}}.e$ of $\mathfrak{g}_{\mathbb{C}}$ are in bijection with $K_{\mathbb{C}}$ -conjugacy classes of triples $(l, \mathfrak{q}_l, \mathfrak{w}_l)$ where l is a (Θ, σ) Levi subalgebra of $\mathfrak{g}_{\mathbb{C}}$ in which e is noticed, \mathfrak{q}_l a noticed parabolic subalgebra of [l, l] and \mathfrak{w}_l is an $L \cap K_{\mathbb{C}}$ -module in l.

In fact (e,1) always goes to this $(\Theta,\sigma)\text{-stable}$ Levi l .

REFERENCES:

King: The Component groups of nilpotents in exceptional real Lie algebras. Comm. Algebra 20 (1) (1992) 219-284.

Noël: Nilpotent orbits and Θ -stable parabolic subalgebras. J. of Representation Theory (2) (1998) 1-32.

Sommers: A generalization of the Bala-Carter theorem for nilpotent orbits. International Mathematics Research Notices (11) (1998) 539-562.

Sommers: Nilpotent Orbits and the Affine Flag Manifold. PhD. thesis MIT Sept 1997.