Component Groups of Centralizers of Nilpotents in Complex Symmetric Spaces

Alfred Gérard Noël University of Massachusetts Boston email: alfred.noel@umb.edu

Given an $n \times n$ real matrix:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

The trace of A is $tr(A) = \sum_{i=1}^{n} a_{ii}$.

Define $\mathfrak{sl}_n(\mathbb{R})$ the set of real matrices of trace zero. Similarly $\mathfrak{sl}_n(\mathbb{C})$ is the set of complex matrices of trace zero.

 $\mathfrak{sl}_n(\mathbb{R})$ and $\mathfrak{sl}_n(\mathbb{C})$ are Lie algebras with Bracket operation : [A, B] = AB - BA.

A $n \times n$ matrix E is nilpotent if there exists a positive integer k such that:

$$E^k = 0$$

Let $SL_n(\mathbb{R})$ be the set of real invertible matrices with determinant 1. (n odd)

Given a nilpotent matrix E in $\mathfrak{sl}_n(\mathbb{R})$, Denote $SL_n(\mathbb{R})^E$ the set of invertible matrices that commute with E under matrix multiplication and call it the **centralizer** of E in $SL_n(\mathbb{R})$.

 $SL_n(\mathbb{R})^E$ is a Lie group which may not be topologically connected . Instead it may consist of a finite number of components.

 $SL_n(\mathbb{R})^E_{\circ}$ is the component containing the identity. Consider the quotient:

$$A(E) = \frac{SL_n(\mathbb{R})^E}{SL_n(\mathbb{R})^E_{\circ}}$$

Problem: Give a unified description of the conjugacy classes of A(E) for all real reductive Lie groups including the exceptional ones.

Eric Sommers (1997) gave such a description for complex Lie groups.

Application: Unitary Representation of Real Lie Groups.

Example 1.

Let
$$E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 be a nilpotent

matrix in $\mathfrak{sl}_3(\mathbb{R})$. Compute $SL_3(\mathbb{R})^E$.

A simple computation gives:

$$SL_{3}(\mathbb{R})^{E} = \begin{pmatrix} a & b & c \\ 0 & a & 0 \\ 0 & d & \frac{1}{a^{2}} \end{pmatrix} a \neq 0, b, c, d \in \mathbb{R}$$
$$SL_{3}(\mathbb{R})^{E} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & \frac{1}{a^{2}} \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{a} & \frac{c}{a} \\ 0 & 1 & 0 \\ 0 & da^{2} & 1 \end{pmatrix}$$
$$Let \ F = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ and } H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

[H, E] = 2E [H, F] = -2F [E, F] = H

6

(H, E, F) is an \mathfrak{sl}_2 -triple.

$$SL_3(\mathbb{R})^{(H,E,F)} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & \frac{1}{a^2} \end{pmatrix} \qquad a \neq 0.$$

 $SL_3(\mathbb{R})^E = SL_3(\mathbb{R})^{(H,E,F)} \times \text{Unipotent}$

$$A(E) = \frac{SL_3(\mathbb{R})^E}{SL_3(\mathbb{R})^E_{\circ}} = \frac{SL_3(\mathbb{R})^{(H,E,F)}}{SL_3(\mathbb{R})^{(H,E,F)}_{\circ}}$$

 $SL_3(\mathbb{R})^{(H,E,F)} \simeq \mathbb{R}^*$

$$A(E) = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\} = \mathbb{Z}_2$$

The above method will not work well for arbitrarily large matrices. Also it will not be appropriate for the exceptional groups.

General Strategy:

 $(E, \overline{C}) \iff (l, \mathfrak{q}_l, w_l)$

- E is a nilpotent in $\mathfrak{sl}_n(\mathbb{R})$
- \overline{C} a conjugacy class of A(E)
- *l*: elliptic pseudo-Levi subalgebra of $\mathfrak{sl}_n(\mathbb{C})$
- \mathfrak{q}_l : a Θ -stable parabolic subalgebra of l
- \mathfrak{w}_l : a certain subspace of \mathfrak{q}_l . E sits nicely in it.

The set of complex matrices of trace zero which commute with a given orthogonal A is an **elliptic pseudo-Levi** subalgebra.

Example

Let
$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathfrak{sl}_{3}(\mathbb{C})^{A} = \begin{pmatrix} a & b & 0 \\ d & e & 0 \\ 0 & 0 & -a - e \end{pmatrix} a, b, d, e \in \mathbb{C}$$

 $\mathfrak{sl}_3(\mathbb{C})^A \simeq \mathfrak{sl}_2(\mathbb{C}) \oplus \mathbb{C}.$

Parabolic Subalgebras

 $\mathbf{d} = [d_1, \dots d_k]$ be a partition of n

$$E = \begin{pmatrix} N_1 & 0 & \dots & 0 \\ 0 & N_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & N_k \end{pmatrix} \iff \mathbf{d}$$
$$N_i = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ddots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}_{d_i \times d_i}$$

Jordan Decomposition

Example

 $\mathbf{d} = [4, 2, 1]$ a partition of 7

$$\mathfrak{b} \cong \begin{pmatrix} * & * & * & * & 0 & 0 & 0 \\ 0 & * & * & * & 0 & 0 & 0 \\ 0 & 0 & * & * & 0 & 0 & 0 \\ 0 & 0 & 0 & * & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & * & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- \mathfrak{l} : Levi Subalgebra
- \mathfrak{b} : Parabolic Subalgebra

Levi subalgebra : abstraction of diagonal blocks

Parabolic Subalgebra : abstraction of upper triangular matrices

 \mathfrak{w} tells us the place of E in the parabolic

Description of additional data

 $\mathfrak{sl}_n(\mathbb{R}) = \mathfrak{so}_n(\mathbb{R}) \oplus$ sym real matrices $\mathfrak{so}_n(\mathbb{R}) : n \times n$ skew-sym real matrices $\mathfrak{sl}_n(\mathbb{C}) = \mathfrak{so}_n(\mathbb{C}) \oplus$ sym cplx matrices $\Theta(X) = -X^T$: Cartan involution

 $\mathfrak{p}_{\mathbb{C}}$: Set of complex symmetric matrices

 $SO_n(\mathbb{C})$: group of complex orthogonal matrices

 $SO_n(\mathbb{C})$ preserves $\mathfrak{p}_{\mathbb{C}}$ under conjugation

Kostant-Sekiguchi Correspondence

There is a one to one correspondence between nilpotent $SL_n(\mathbb{R})$ -orbits in $\mathfrak{sl}_n(\mathbb{R})$ and nilpotent $SO_n(\mathbb{C})$ -orbits in $\mathfrak{p}_{\mathbb{C}}$.

$$SL_n(\mathbb{R}).E \leftrightarrows SO_n(C).e \qquad e \in \mathfrak{p}_{\mathbb{C}}$$

$$A(E) = \frac{SL_n(\mathbb{R})^E}{SL_n(\mathbb{R})^E_{\circ}} = \frac{SO_n(\mathbb{C})^e}{SO_n(\mathbb{C})^e_{\circ}} = A_k(e)$$

Equivalent Problem:

Give a unified description of $A_k(e)$ for all complex symmetric spaces.

Any nilpotent
$$E$$
 of $\mathfrak{sl}_n(\mathbb{R})$ is $SL_n(\mathbb{R})$
conjugate to a nilpotent N which lies in a
 \mathfrak{sl}_2 -triple:
 (H, N, F) with $H = H^T$ and $N^T = F$
 $x = i(N - F)$: skew-symmetric
 $e = \frac{1}{2}(N + F + iH)$: symmetric
 $f = \frac{1}{2}(N + F - iH)$: symmetric : $e = \overline{f}$
 $(H, N, F) \iff (x, e, f)$
 $A(E) = A(N) = \frac{SL_n(\mathbb{R})^{(H, N, F)}}{SL_n(\mathbb{R})^{(H, N, F)}}$

$$= \frac{SO_n(\mathbb{C})^{(x,e,f)}}{SO_n(\mathbb{C})^{(x,e,f)_{\circ}}} = A_k(e)$$

Example

$$\begin{split} E &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad N = \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix} \\ H &= \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \qquad F = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix} \\ x &= \sqrt{2} \begin{pmatrix} 0 & i & 0 \\ -i & 0 & i \\ 0 & -i & 0 \end{pmatrix} \\ e &= \frac{1}{\sqrt{2}} \begin{pmatrix} i\sqrt{2} & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & -i\sqrt{2} \end{pmatrix} \end{split}$$

$$X \in \mathfrak{q} \iff -X^{T} \in \mathfrak{q}$$
$$H_{1} = \begin{pmatrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, H_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix},$$
$$E_{1} = \frac{1}{2} \begin{pmatrix} i & 1 & 0 \\ 1 & -i & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_{2} = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 1 \\ i & 1 & 0 \end{pmatrix}$$
$$E_{3} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & -1 \\ i & 1 & 0 \end{pmatrix}$$

 $\mathfrak{b} = \mathbb{C}H_1 \oplus \mathbb{C}E_3 \oplus \mathbb{C}H_2 \oplus \mathbb{C}E_1 \oplus \mathbb{C}E_2$ conjugate to upper triangular matrices Noticed nilpotent elements

Given an elliptic pseudo-Levi $l \subseteq \mathfrak{sl}_n(\mathbb{C})$ and a nilpotent e of $l \cap \mathfrak{p}_{\mathbb{C}}$ is called **noticed** if the partition associated with e is made of different parts [Noël]

Equivalently

A nilpotent $e \in l \cap \mathfrak{p}_{\mathbb{C}}$ is said to be noticed in l if the conditions 1. $z \in l \cap \mathfrak{so}_n(\mathbb{C})$ 2. z similar to a diagonal matrix 3. z commute with e

imply that z commute with l.

Noticed nilpotents classify all nilpotents [Noël]

Theorem (1999). There is a one to one correspondence between $SO_n(\mathbb{C})$ -conjugacy classes of pairs (e, \bar{z}) , where e is a nilpotent in $\mathfrak{p}_{\mathbb{C}}$, \bar{z} a conjugacy class in $A_k(e)$ and $SO_n(\mathbb{C})$ -conjugacy classes of triples $(l, \mathfrak{q}_l, \mathfrak{w}_l)$ where l is an elliptic pseudo-Levi subalgebra in which eis noticed, \mathfrak{q}_l is a noticed Θ -stable parabolic of l for e, and \mathfrak{w} is a is prehomogeneous subspace of \mathfrak{q}_l . **Example 1.** Let $\mathfrak{g} = \mathfrak{sl}_3(\mathbb{R})$. The two non-zero nilpotent orbits of \mathfrak{g} are parametrized by the matrices

$$E_1 = \frac{1}{2} \begin{pmatrix} i & 1 & 0 \\ 1 & -i & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 1 \\ i & 1 & 0 \end{pmatrix} \in \mathfrak{p}_{\mathbb{C}}$$

A computation gives:

$$A_k(E_1) = \mathbb{Z}_2$$
 and $A_k(E_2) = id$

We obtain the following correspondence:

$$(E_1, id) \rightleftharpoons (\mathfrak{sl}_3(\mathbb{C}), \mathfrak{b}, \mathbb{C}E_1)$$
$$(E_1, -id) \rightleftharpoons (\mathfrak{sl}_2(\mathbb{C}) \oplus \mathbb{C}, \mathfrak{b}_1, \mathfrak{w})$$
$$(E_2, id) \rightleftharpoons (\mathfrak{sl}_3(\mathbb{C}), \mathfrak{b}, \mathbb{C}E_2)$$

Example 2. Let $\mathfrak{g} = \mathfrak{sl}_5(\mathbb{R})$.

Nilpotent: $E \iff [2, 2, 1]$ (Not noticed) $(E, id) \rightleftharpoons (\mathfrak{sl}_2(\mathbb{C}) \oplus \mathbb{C}, \mathfrak{b}', \mathfrak{w}')$ $(E, -id) \rightleftharpoons (\mathfrak{sl}_2(\mathbb{C}) \oplus \mathfrak{sl}_3(\mathbb{C}), \mathfrak{b}'', \mathfrak{w}'')$

Fact

 $(E, id) \rightleftharpoons (l, \mathfrak{q}_l, \mathfrak{w}_l)$

l is a θ -stable Levi subalgebra. [Noël]

REFERENCES:

King: The Component groups of nilpotents in exceptional real Lie algebras. Comm. Algebra 20 (1) (1992) 219-284.

Noël: Nilpotent orbits and Θ -stable parabolic subalgebras. AMS Journal of Representation Theory (2) (1998) 1-32.

Sommers: A generalization of the Bala-Carter theorem for nilpotent orbits. International Mathematics Research Notices (11) (1998) 539-562.