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NILPOTENT ORBITS AND THETA-STABLE

PARABOLIC SUBALGEBRAS

ALFRED G. NO�EL

Abstract. In this work, we present a new classi�cation of nilpotent orbits

in a real reductive Lie algebra g under the action of its adjoint group. Our

classi�cation generalizes the Bala-Carter classi�cation of the nilpotent orbits

of complex semisimple Lie algebras. Our theory takes full advantage of the

work of Kostant and Rallis on p
C
, the \complex symmetric space associated

with g". The Kostant-Sekiguchi correspondence, a bijection between nilpotent

orbits in g and nilpotent orbits in p
C
, is also used. We identify a fundamental

set of noticed nilpotents in p
C
and show that they allow us to recover all other

nilpotents. Finally, we study the behaviour of a principal orbit, that is an

orbit of maximal dimension, under our classi�cation. This is not done in the

other classi�cation schemes currently available in the literature.

Introduction

Let g
C
be a semisimple Lie algebra and G

C
its adjoint group. We say that an

element x of g
C
is nilpotent if and only if, adx : y ! [x; y] for all y 2 g

C
, is a

nilpotent endomorphism of g
C
. Kostant (see also Dynkin [Dy]) has shown, in his

fundamental 1959 paper [Ko], that the number of nilpotent orbits of G
C
in g

C
is

�nite. The Bala-Carter classi�cation can be expressed as follows:

There is a one-to-one correspondence between nilpotent orbits of g
C
and con-

jugacy classes of pairs (m; p
m
), where m is a Levi subalgebra of g

C
and p

m
is a

distinguished parabolic subalgebra of the semisimple algebra [m;m]. In this cor-

respondence, the nilpotent g
C
orbit comes from the Richardson orbit of P

m
, the

connected subgroup of G
C
with Lie algebra p

m
, on the nilradical of p

m
.

This work shows how a theory similar to the Bala-Carter classi�cation can be

used to parametrize nilpotent orbits of a semisimple real Lie algebra g under the

action of its adjoint group G. For a Cartan decomposition g = k � p of g let

K
C
be the complexi�cation of the connected subgroup K of G with Lie algebra k.

Sekiguchi [Se] proves that there is a one to one correspondence between the G-orbits

in g and the K
C
-orbits in p

C
. We call this correspondence the Kostant-Sekiguchi

correspondence since it was �rst conjectured by Kostant. This allows us to exploit

the rich theory of symmetric spaces [K-R].

A real reductive Lie algebra g has a Cartan decomposition g = k�p for a Cartan
involution �. Hence, by complexi�cation we obtain g

C
= k

C
� p

C
. Denote by � the

conjugation of g
C
with regard to g.
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Our main classi�cation theorem is proved in section 3. We prove that the orbits

K
C

.e are in one-to-one correspondence with the triples of the form (l; q
l
;w), where

e is a non-zero nilpotent in p
C
, l is a minimal (�; �)-stable Levi subalgebra of g

C

containing e, q
l
is a � stable parabolic subalgebra of [l; l] and w is a certain L\K

C

prehomogeneous subspace of q
l
\ p

C
containing e [Theorem 3.2.4]. We note that

Kawanaka has obtained related results. [Ka]

Complex semisimple Lie algebras regarded as real do not give rise to any new

nilpotent orbits. Their compact real forms contain no non-zero nilpotent. Therefore

we can limit our analysis to their non-compact real forms. Such simple real Lie

algebras were classi�ed by Cartan and can be found in Helgason [He]. Note that

a complex conjugacy class of a real nilpotent can split under the action of the real

adjoint group. For example the two matrices

�
0 1

0 0

�
and

�
0 0

1 0

�

are conjugate under the complex group PSL2(C ) but not under the real group

PSL2(R).
In section 1, we explain the nature of the Kostant-Sekiguchi correspondence.

Given a nilpotent element e in p
C
, we give a method for constructing a minimal

�-stable Levi subalgebra containing e [Proposition 1.1.3]. A KS-triple (x; e; f) in

g
C
, that is a normal triple in Kostant-Rallis' sense with the additional property that

�(e) = f , is associated to a �-stable parabolic subalgebra q of g
C
. Several important

Richardson-type theorems are also proved [Proposition 1.2.1 and Theorems 1.2.3,

1.2.6]. For example , let Q be the connected subgroup of G
C
with Lie algebra q. If

q = l�u is the Levi decomposition of q and if e is even we have Q \K
C

.e = u\ p
C
.

This explains the fact that our theory is so close to that of Bala and Carter for

even orbits. De�ne L to be the connected subgroup of G
C
with Lie algebra l.

In section 2 we introduce the notion of noticed nilpotent element. Such an

element e of p
C
is characterized by the fact that the reductive centralizer k(x;e;f)

C
is

trivial [Lemma 2.1.1]. In fact a nilpotent is always noticed in the minimal (�; �)-

stable Levi subalgebra that contains it. Furthermore e is even and noticed if and

only if q = l � u and dim l \ k
C
= dim

u\p
C

[u\k
C
;u\p

C
]
[Theorem 2.1.6]. This dimension

criteria is very similar to the one that Bala and Carter give for their distinguished

parabolic subalgebras. Finally we show that there are, in fact, non-even noticed

elements whose associated �-stable parabolic subalgebra does not satisfy the above

dimension condition. This implies that our classi�cation is di�erent from the Bala-

Carter classi�cation, where all the distinguished nilpotent elements are even. A

distinguished element in p
C
is noticed but not vice versa.

In section 4 we give a description of the noticed orbits of the classical simple

real Lie algebras in terms of signed Young diagrams. Among other results we show

that the non-zero noticed nilpotent orbits of sln(R) are parametrized by partitions

of n with distinct parts. The noticed orbits of most of the real simple algebras are

even. The classical algebras so�2n, su
�
2n, sp(p; q) have no non-zero noticed nilpotent

orbits [Theorem 4.2.1]. An exceptional simple real Lie algebra contains a non-zero

noticed element if and only if it is quasi-split [Proposition 4.1.1].

In the last section we analyze the behaviour of a principal nilpotent element of

p
C
, i.e. an element whose K

C
-orbit has maximal dimension among all K

C
-nilpotent

orbits, under the classi�cation. The main result is that a principal nilpotent element
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e is regular in the minimal (�; �)-stable Levi subalgebra l of g
C
containing it and

the real form l0 of l is quasi-split [Theorem 5.1.8].

Nilpotent orbits have been used extensively in Representation Theory. Their

geometric structure is still being investigated by several researchers. �-stable para-

bolic subalgebras also play an important role in Representation Theory, speci�cally

through the work of Zuckerman and Vogan on Cohomological Induction. Our clas-

si�cation relates the two concepts.

1. �-stable Levi subalgebras

1.1. Minimal �-stable Levi subalgebras. Let g be a real reductive Lie algebra

with adjoint group G and g
C
its complexi�cation. Also let g = k � p be a Cartan

decomposition of g. Finally, let � be the corresponding Cartan involution of g and

� be the conjugation of g
C
with regard to g . Then g

C
= k

C
� p

C
where k

C
and p

C

are obtained by complexifying k and p respectively. Denote by K
C
the connected

subgroup of the adjoint group G
C
of g

C
, with Lie algebra k

C
.

De�nition. By a (�; �)-stable Levi subalgebra of g
C
we shall mean a Levi subal-

gebra of a �-stable parabolic subalgebra of g
C
in Vogan's sense [Vo]. In other words

if l is a (�; �)-stable Levi subalgebra of g
C
, then there exists a �-stable parabolic

subalgebra q � g
C
with Levi decomposition q = l�u such that �(l) = l and �(l) = l.

Every such l is of the form l = g
z

C
for some z 2 ik.

A triple (x; e; f) in g
C
is called a standard triple if [x; e] = 2e, [x; f ] = �2f and

[e; f ] = x. If x 2 k
C
, e and f 2 p

C
, then (x; e; f) is a normal triple. It is a result of

Kostant and Rallis [K-R] that any nilpotent e of p
C
can be embedded in a standard

normal triple (x; e; f). Moreover e is K
C
-conjugate to a nilpotent e0 inside of a

normal triple (x0; e0; f 0) with �(e0) = f 0 [Se]. The triple (x0; e0; f 0) will be called a

Kostant-Sekiguchi or KS-triple .

Every nilpotent E0 in g is G-conjugate to a triple (H;E; F ) in g with the property

that �(H) = �H and �(E) = �F [Se]. Such a triple will be called a KS-triple also.

De�ne a map c from the set of KS-triples of g to the set of normal triples of g
C

as follows:

x = c(H) = i(E � F );

e = c(E) =
1

2
(H � i(E + F ));

f = c(F ) =
1

2
(H + i(E + F )):

The triple (x; e; f) is called the Cayley transform of (H;E; F ). It is easy to ver-

ify that the triple (x; e; f) is a KS-triple and that x 2 ik. The Kostant-Sekiguchi

correspondence [Se] gives a one-to-one map between the set of G-conjugacy classes

of nilpotents in g and the K
C
-conjugacy classes of nilpotents in p

C
. This correspon-

dence sends the zero orbit to the zero orbit and the orbit through the nilpositive

element of a KS-triple to the one through the nilpositive element of its Cayley trans-

form. Recently, Mich�ele Vergne [Ve] has proved that there is in fact a K-invariant

di�eomorphism between the G-conjugacy class and the K
C
-conjugacy class assso-

ciated by the Kostant-Sekiguchi correspondence.

The KS-triple (x; e; f) in g
C
corresponds to a real KS-triple (H;E; F ) in g un-

der the Kostant-Sekiguchi map and the reductive centralizer k(x;e;f)
C

= k
(H;E;F ) �

ik(H;E;F ) is �-stable and �-stable.
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Let s = k
e

C
be the centralizer of e in k

C
. Call any subalgebra of k

C
consisting of

semisimple elements toral. Any toral subalgebra is commutative [H1]. A Cartan

subalgebra of a Lie algebra is a self-normalizing Lie subalgebra [H1]. We shall need

the following lemma:

Lemma 1.1.1. Let t be a maximal toral subalgebra of s. Then s
t
is a Cartan

subalgebra of s, and t consists exactly of the semisimple elements in s
t
.

Proof. This is part of the proof of Theorem 8.1.1 of [C-Mc].

Let t1 and t2 be two maximal toral subalgebras of s. Then s
t1 is Ke

C
-conjugate

to s
t2 by a map that must send t1 to t2 because Ke

C
preserves semisimplicity and

nilpotence in k
C
. Hence any two maximal toral subalgebras of ke

C
are conjugate

under Ke

C
.

Lemma 1.1.2. If t is a Cartan subalgebra of k
(x;e;f)
C

, then t is a maximal toral

subalgebra of k
e

C
.

Proof. We know that ke
C
= k

(x;e;f)
C

� u
e
where u

e
is an adx invariant nilpotent ideal

of ke
C
. Let t0 be a maximal toral subalgebra of ke

C
such that t $ t

0. Any element z of

t
0 n t can be written in the form of

z = z1 + z2 with z1 2 k
(x;e;f)
C

and z2 2 ue :
But

[t; z] = [t; z1]� [t; z2] = 0:

Hence

[t; z1] = 0 and [t; z2] = 0;

since k(x;e;f)
C

normalizes itself and g
C
.

Clearly z1 is in t, for t is a maximal toral subalgebra of k(x;e;f)
C

. It follows that

z � z1 is in t
0, that is, z � z1 is semisimple. Since z � z1 = z2 and z2 is nilpotent,

z2 = 0. Hence z must be in t.

Proposition 1.1.3. If l is a minimal (�; �)-stable Levi subalgebra of g
C
containing

a nilpotent element e of p
C
, then l = g

t

C
, where t is a maximal toral subalagebra of

k
e

C
.

Proof. Let (H;E; F ) be a KS-triple in g. By de�nition l = g
z

C
for some z in ik.

Since iz 2 k, we can �nd a maximal torus t
0
of k(H;E;F ) containing iz. Therefore

t = t
0
� it

0
is a Cartan subalgebra of k(x;e;f)

C
containing z. From Lemma 1.1.2 it is

also a maximal toral subalgebra of ke
C
. Moreover gt

C
� g

z

C
= l.

We shall now prove that gt
C
is a (�; �)-stable Levi subalgebra of g

C
containing e.

By minimality of l, this will complete the proof.

Since t is (�; �) stable, so is the centralizer g
t

C
. Let � = �(g

C
; h) be the root

system relative to a Cartan subalgebra h of g
C
such that t � h. Then g

t

C
is the Levi

subalgebra generated by h and all the root spaces for the roots � 2 � such that

�(t) = 0.

We proceed to prove the following theorem.

Theorem 1.1.4. Any two minimal (�; �)-stable Levi subalgebras of g
C
containing

a nilpotent element e of p
C
are Ke

C
conjugate.
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Proof. Let l1 and l2 be two minimal (�; �)-stable minimal Levi subalgebras of g
C

containing e. Then l1 = g
t1
C
and l2 = g

t2
C
, where t1 and t2 are two maximal toral

subalgebras of ke
C
. Since t1 and t2 are K

e

C
-conjugate, so are l1 and l2.

1.2. Some denseness theorems. Let (x; e; f) be a KS-triple with x 2 ik. From

the representation theory of sl2, gC has the following eigenspace decomposition:

g
C
=
M
j2Z

g
(j)
C

where g(j)
C

= fz 2 g
C
j [x; z] = jzg:

The subalgebra q =
L
j2N

g
(j)
C

is a parabolic subalgebra of g
C
with a Levi part

l = g
(0)
C

and nilradical u =
L
j2N�

g
(j)
C
.

Call q the Jacobson-Morosov parabolic subalgebra of e relative to the triple

(x; e; f). Our choice of the triple (x; e; f) forces q to be �-stable in Vogan's sense.

Retain the above notations. Let Q and L be the connected subgroups of G
C
with

Lie algebras q and l respectively. De�ne L \ K
C
to be the connected subgroup of

G
C
with Lie algebra l \ k

C
. We shall prove some facts about some eigenspaces of x

in p
C
.

Kostant and Rallis ([K-R, in proof of Lemma 4]) proved that L \ K
C

.e is dense

in g
(2)
C
\ p

C
which is therefore a prehomogeneous space in Sato's sense.

Let q be the Jacobson-Morozov parabolic subalgebra of e relative to the normal

triple (x; e; f). Then

Proposition 1.2.1. Q \ K
C
:e is dense in

L
i�2

g
(i)
C
\ p

C
. Moreover if e is even, that

is g
(i)
C

= 0 for i odd, then Q \K
C

.e = u \ p
C
.

Proof. The proof can easily be obtained by modifying an argument of Carter [Ca,

Proposition 5.7.3].

Lemma 1.2.2. With the above notation dimg
(1)
C
\ k

C
= dimg

(1)
C
\ p

C
.

Proof. See [No2].

The author wishes to thank Cary Rader for suggestions regarding the proof of

the following theorem.

Theorem 1.2.3. L \K
C
has �nitely many orbits on each eigenspace g

(i)
C
\ p

C
.

Proof. Let S = f1; �g and de�ne H = L �� S to be the semidirect product of L

and S where � is a homomorphism from S to Aut(L) such that for s 2 S and y 2
L, �(s)(y) = s(y). If we identify L and S with L � 1 and 1 � S respectively, then

they are closed subgroups of H. If (y1; s1) and (y2; s2) are two elements of H, then

the group multiplication law on H is de�ned so that

(y1; s1)�� (y2; s2) = (y1�(s1)y2; s1s2):

Observe that S is diagonalizable and since L is a subgroup of index 2 in H, it is

normal in H. Moreover g
C
is stable under the adjoint representation of H. Let

LS = fy 2 Ljsys�1 = y for every s 2 Sg. It is obvious that LS = L \K
C
and that

the (�1) weight space of S in g
(i)
C

is g(i)
C
\ p

C
. The fact that L has a �nite number
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of orbits on g
(i)
C

[R2, Theorem E] implies that

g
C
(i) \ p

C
�

n[
j=1

L:zj for zj 2 g
(i)
C
:

Our theorem now follows from a result of Richardson [R2, Theorem A] that if

z 2 g
(i)
C
\ p

C
, then L \ K

C
has only a �nite number of orbits on the intersection

(L:z) \ (g(i)
C
\ p

C
).

We shall now prove a theorem of great importance to us. We shall show that

L\K
C
has a �nite number of orbits on

u\p
C

[u\k
C
;u\p

C
]
. But �rst, we give a Lie algebra

version of a theorem of R.W. Richardson. See ([R�oh, Theorem 1.4]).

Some de�nitions are needed. Let � be a root system of g
C
and � the set of

simple roots determined by our choice of a positive root system �+. It is a well

known fact that any parabolic subalgebra is G
C
-conjugate to a parabolic of the form

p = l � u, where

l = h�
X
�2h�i

g
�

C

and

u =
X

�2�+nh�i

g
�

C
:

Here, � � �, h�i denotes the subroot system of � generated by � and h is the

Cartan subalgebra of g
C
relative to �. See [C-Mc].

Proposition 1.2.4. Retaining the above notation

1. u and [u; u] are the direct sum of their 1-dimensional root spaces.

2. A root � of u is a root of [u; u] if and only if it is the sum of two roots of u.

Such roots are called decomposable.

3. A root in u is indecomposable if and only if it is the sum of one simple root

not in � and various simple roots in �.

Proof. See Collingwood and McGovern [C-Mc, Proposition 8.2.7].

Let q = l + u be the Jacobson-Morozov parabolic subalgebra relative to the

standard triple (x; e; f) of g
C
. Let L be the connected subgroup of G

C
with Lie

algebra l. We obtain:

Theorem 1.2.5 (Richardson). L has only a �nite number of orbits on
u

[u;u]
. In

particular there exists a unique dense orbit and so dim l � dim u

[u;u]
.

Proof. See [No2], [R2, Theorem E].

Now, let (x; e; f) be a normal triple and q = l � u its Jacobson-Morozov para-

bolic. The next theorem is very important. It shows that L\K
C
has a dense orbit

on
u\p

C

[u\k
C
;u\p

C
]
.

Theorem 1.2.6. L \K
C
has only a �nite number of orbits on

u\p
C

[u\k
C
;u\p

C
]
.

In particular there exists a unique dense (L \ K
C
)-orbit and so dim l \ k

C
�

dim
u\p

C

[u\k
C
;u\p

C
]
.
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Proof. De�ne S and H as in Theorem 1.2.3. Then L \K
C
= LS . First we observe

that
u\p

C
+[u;u]

[u;u]
is included in

�
u

[u;u]

�
�1
, the �1 weight of S in u

[u;u]
. It is a general

fact (see [Br, Theorem 5.20]) that

u \ p
C
+ [u; u]

[u; u]
�= u \ p

C

[u; u]\ (u \ p
C
)
:

Furthermore

[u\ k
C
; u \ p

C
] � [u; u]\ (u \ p

C
):

The fact that

[u; u] � [u \ k
C
] + [u \ k

C
; u \ p

C
]

implies that

[u; u]\ (u \ p
C
) � [u \ k

C
; u\ p

C
]

because

[u \ k
C
; u \ p

C
] � (u \ p

C
) and (u \ k

C
) \ (u \ p

C
) = 0:

Hence

u \ p
C

[u; u]\ (u \ p
C
)
=

u \ p
C

[u \ k
C
; u\ p

C
]
:

It follows that

u \ p
C

[u\ k
C
; u \ p

C
]
�
�

u

[u; u]

�
�1

:

From the previous theorem u

[u;u]
is included in a �nite union of L orbits. Each such

orbit intersected with
�

u

[u;u]

�
�1

is a �nite union of L \ K
C
orbit by Richardson.

[R2, Theorem A]. The desired result follows.

2. Noticed nilpotent orbits in symmetric spaces

2.1. Noticed nilpotent elements and �-stable parabolic subalgebras.

De�nition. A nilpotent element e in p
C
(or its K

C
-orbit) is noticed if the only

(�; �)-stable Levi subalgebra of g
C
containing e (or eqivalently meeting K

C
:e) is g

C

itself.

A Levi subalgebra l contains e if and only if [l; l] does. Thus if e is noticed in l,

it is actually noticed in the semi-simple subalgebra [l; l] and any nilpotent e 2 p
C

is noticed in any minimal (�; �)-stable Levi subalgebra l containing it.

Let (x; e; f) be a normal triple. Then from Proposition 1.1.3, e is noticed if and

only if k(x;e;f)
C

= f0g. Recall the Z2-gradation

g
C
=
M
i2Z

g
(i)
C

=
M
i2Z

g
(i)
C
\ k

C
� g

(i)
C
\ p

C
:

Using this gradation it is easy to give a criterion for a nilpotent e 2 p
C
to be noticed.

Lemma 2.1.1. Retain the above notations. Then a nilpotent element e in p
C
is

noticed if and only if dimg
(0)
C
\ k

C
= dimg

(2)
C
\ p

C
.
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Proof. Dragomir Djokovi�c proved the following result in section 12 of [D1]:

Let (x; e; f) be a normal triple of g
C
. Let l(e) be a Levi factor of ke

C
. For any

integer i let

N (0; i) = dimg
(i)
C
\ k

C
;

N (1; i) = dimg
(i)
C
\ p

C
:

Then dim l(e) = N (0; 0)� N (1; 2).

Note that k(x;e;f)
C

is a Levi factor of ke
C
. Hence,

dim k
(x;e;f)
C

= dimg
(0)
C
\ k

C
� dimg

(2)
C
\ p

C
:(2.1.2)

But e is noticed if and only if k(x;e;f)
C

= 0. The lemma follows.

Later, we shall give a classi�cation of the conjugacy classes of the nilpotent orbits

of K
C
in p

C
. It is a generalization of the Bala-Carter classi�cation for G

C
-nilpotent

orbits in g
C
[B-C1]. Bala and Carter use the notion of distinguished parabolic sub-

algebra in order to parametrize the nilpotent orbits of g
C
. Such parabolic algebras

always contain a distinguished nilpotent element in g
C
.

De�nition. A nilpotent element X in g
C
(or its G

C
-orbit) is distinguished if the

only Levi subalgebra of g
C
containing X (or eqivalently meeting G

C
:X) is g

C
itself.

Clearly any distinguished nilpotent belonging to p
C
is automatically noticed.

Furthermore Bala and Carter give the following criterion for a nilpotent X 2 g
C
to

be distinguished:

Lemma 2.1.3. Retain the above notations. Then X is distinguished if and only if

dimg
(0)
C

= dimg
(2)
C

.

Proof. See Bala and Carter [B-C1] or Collingwood and McGovern [C-Mc, Lemma

8.2.1].

Observe the similarity between the criterion for X to be distinguished and that

for e to be noticed.

Recall that a non-zero nilpotent X of g
C
is even if and only if g(i)

C
= 0 whenever

i is odd. Bala and Carter also proved that:

Theorem 2.1.4. Any distinguished nilpotent X 2 g
C
is even.

Proof. See Bala and Carter [B-C1] or Collingwood and McGovern [C-Mc, Theorem

8.2.3].

The above eveness property is not shared by noticed nilpotent elements in p
C
.

We shall give some examples. But �rst we give the Bala-Carter characterization of

distinguished parabolic subalgebras.

Let H;X; Y be a standard triple of g
C
and let p be the Jacobson-Morozov para-

bolic subalgebra of X with Levi decomposition p = m� v. Then we have:

Theorem 2.1.5. X is distinguished if and only if dimm = dim v

[v;v]
.

Proof. See Bala and Carter [B-C1] or Collingwood and McGovern [C-Mc, Theorem

8.2.6].
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Therefore it makes sense to de�ne an arbitrary parabolic subalgebra p = m � v

to be distinguished if dimm = dim v

[v;v]
.

If e is an even noticed nilpotent element of p
C
, then we can prove a theorem

similar to Theorem 2.1.5.

Theorem 2.1.6. Let e be an even nilpotent element of p
C
. Let q be a �-stable

Jacobson-Morosov parabolic subalgebra of e relative to a triple (x; e; f) de�ned as

above. Then q = l � u and dim l \ k
C
= dim

u\p
C

[u\k
C
;u\p

C
]
if and only if e is noticed.

Proof. We may assume that q is de�ned as above. Let u0 =
L
i�4

g
(i)
C
. Then

dim l \ k
C
= dimg

(0)
C
\ k

C
;

while

dimg
(2)
C
\ p

C
= dimu \ p

C
� dimu0 \ p

C
:

By de�nition we have

[u\ k
C
; u \ p

C
] � u0 \ p

C
:

By the representation theory of sl2,

if z 2 g
(i)
C
\ p

C
and i � 4, then z = [e; z0] for some z0 in g

(i�2)
C

\ k
C
� u \ k

C
.

Hence

u0 \ p
C
� [u \ k

C
; u \ p

C
]:

The conclusion follows at once from Theorem 1.2.6 and Lemma 2.1.1.

For exceptional Lie algebras one obtains the following:

Proposition 2.1.7. Let g
C
be an exceptional simple complex Lie algebra. Let q =

l � u be a �-stable Jacobson-Morosov parabolic subalgebra of e relative to a normal

triple (x; e; f) de�ned as above. If e is noticed, then dim l \ k
C
= dim

u\p
C

[u\k
C
;u\p

C
]
.

Proof. For our purpose we use the tables obtained by Djokovi�c [D1, D2] in order

to isolate the orbits of interest. In view of the previous theorem, we only need to

consider non-even orbits for which k
(x;e;f)
C

= 0. It turns out there are only �ve of

them (see Table 1).

The details can be found in [No2]. Since q is the Jacobson-Morosov parabolic

subalgebra of e, we have

u \ p
C

[u \ k
C
; u\ p

C
]
�= g

(1)
C
\ p

C
�

g
(2)
C
\ p

C

[g
(1)
C \ kC ; g

(1)
C \ pC]

as L \K
C
-modules.

Following Djokovi�c we �nd that the only relevent cases come from the real forms

E7(7), E8(8) and E6(6).

Computations using the software Lie on a Macintosh IIci reveal that

dimg
(0)
C
\ k

C
= dimg

(2)
C
\ p

C
;

dimg
(1)
C
\ k

C
= dim[g(1)

C
\ k

C
; g(1)

C
\ p

C
]

as indicated in the following table.
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Table 1.
1

Algebra orbits l \ k
C

g
(1)
C
\ k

C
g
(1)
C
\ p

C
g
(2)
C
\ p

C
[; ]

E7(7) 1111111 7 7 7 7 7

E8(8) 11111111 8 8 8 8 8

E8(8) 11111121 8 7 7 8 7

E6(6) 1111 4 4 4 4 4

E6(6) 1112 4 3 3 4 3

2.2. An important counter-example. It is not true in general that if e is no-

ticed, then

dim l \ k
C
= dim

u \ p
C

[u \ k
C
; u\ p

C
]
:

We shall give the following example.

Let g be sl(7;R). Then g
C
= sl(7; C ), k

C
= so(7; C ), and p

C
is the space of 7� 7

complex symmetric matrices. The Cartan involution � is de�ned as �(X) = �XT

for X 2 g. Let

H =

0
BBBBBBBB@

3 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 �1 0 0 0 0

0 0 0 �3 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 �1 0

0 0 0 0 0 0 0

1
CCCCCCCCA

and

E =

0
BBBBBBBB@

0
p
3 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0
p
3 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1
CCCCCCCCA

:

Choose F = ET . Then �(H) = �H, �(E) = �F . Hence (H;E; F ) is a KS-triple,

and x = i(E � F ) is in k
C
. In fact under the Kostant-Sekiguchi map (H;E; F )

corresponds to a normal triple (x; e; f), with

e =
1

2
(E + F + iH) and f =

1

2
(E + F � iH):

Next we compute the following eigenspaces of x.

A simple computation [No2] shows that dimg
(0)
C
\ k

C
= dimg

(2)
C
\ p

C
= 5. Hence

by Lemma 2.1.1, the triple (x; e; f) is noticed.

1[,] stands for [g
(1)
C

\ k
C
; g

(1)
C

\ p
C
].
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From the theory of the classi�cation of the real nilpotent orbits of sln [C-Mc]

and by Sekiguchi [Se]

G
C
:e = G

C
:E;

and the triple (x; e; f) can be associated to the partition [4; 2; 1] of 7 and the cor-

responding weighted Dynkin diagram is

2 0 1 1 0 2

o o o o o o

One sees that dimg
(1)
C

= 4. Consequently dimg
(1)
C
\ k

C
= dimg

(1)
C
\ p

C
= 2. But

dim[g(1)
C
\ k

C
; g(1)

C
\ p

C
] = 3. So

dim l \ kC = 5 6= 2 + (5� 3) = dim g
(1)
C
\ pC

+ dim
g
(2)

C
\ pC

[g
(1)

C
\ kC; g(1)C \ pC]

= dim
u \ pC

[u \ kC; uC \ pC]
:

3. An extension of the Bala-Carter theory

3.1. The Bala-Carter correspondence. The Bala-Carter Classi�cation can be

expressed as follows:

Theorem 3.1.1 (Bala-Carter). There is a one-to-one correspondence between nil-

potent orbits of g
C
and G

C
-conjugacy classes of pairs (m; p

m
), where m is a Levi

subalgebra of g
C
and p

m
is a distinguished parabolic subalgebra of the semisimple

algebra [m;m].

Proof. Bala and Carter [B-C1] (Also see Carter [Ca, Theorem 5.9.5], Collingwood

and McGovern [C-Mc, Theorem 8.2.12]).

3.2. Extension of the Bala-Carter correspondence. Let g
u
= k � ip. Then,

g
u
is a compact real form of g

C
and g

C
= g

u
� ig

u
. Let � be the Killing form on g

C

and � = � � �, the conjugation of g
C
with respect to g

u
. For X and Y in g

C
de�ne

�0(X;Y ) = ��(X; � (Y )). It is well known that �0 is a positive de�nite hermitian

form on g
C
.

The next lemma is also known.

Lemma 3.2.1. Let q =
L
j�0

g
(j)
C

be the Jacobson-Morozov parabolic subalgebra as-

sociated with the triple (x; e; f) where x 2 ig
u
.Then for j 6= k , g

(j)
C

is orthognal to

g
(k)
C

relative to �0.

Proof. We can assume k > 0. Observe that � (x) = �x, since x 2 ig
u
. Let y 2 g

(k)
C

,

z 2 g
(j)
C

and k 6= j. Then

[x; � (z)] = � ([� (x); z]) = � ([�x; z]) = �j� (z):
Hence � (z) 2 g

(�j)
C

. Using associativity of the Killing form �, we have

�0(y; z) = ��(y; � (z)) = �1
k
�([x; y]; � (z))

=
1

k
�(y; [x; � (z)]) = � j

k
�(y; � (z)) =

j

k
�0(y; z):
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Hence

�0(y; z) = 0:

We will need the following lemma.

Lemma 3.2.2. For any normal triple (x; e; f) of g
C
, [px

C
; g(2)

C
\ p

C
] = g

(2)
C
\ k

C
.

Proof. From the sl(2; C ) representation theory we know that

[px
C
; e] = g

(2)
C
\ k

C
:

Therefore, since e 2 g
(2)
C
\ p

C
we have

[px
C
; g(2)

C
\ p

C
] � g

(2)
C
\ k

C
:

On the other hand, clearly,

[px
C
; g(2)

C
\ p

C
] � g

(2)
C
\ k

C
:

The lemma follows.

Let q = l � u be a �-stable parabolic subalgebra of g
C
. Let m be the orthogonal

complement of [u \ k
C
; [u \ k

C
; u \ p

C
]] relative to �0 inside u \ p

C
. De�ne w to be

an L \K
C
module in m. Finally, let ŵ = w � [l \ p

C
;w]. Clearly, ŵ is �-stable.

De�nition. De�ne L to be the set of triples fg
C
; q;wg such that

1. w has a dense L \K
C
orbit: (L \K

C
).ê,

2. dim l \ k
C
= dimw

3. L.ê is dense in ŵ

4. ŵ ? [u; [u; u]]

5. [u; ŵ] ? ŵ

6. [u\ k
C
; u \ p

C
] � [q \ k

C
;w].

Property 3 implies that ŵ is an L-module for

L:ê = ŵ:

Hence ŵ is L stable.

Let S be the set of noticed KS-triples (x; e; f) of g
C
.

We have a map F fromS to Lwhich associates a triple (x; e; f) ofS to an element

(g
C
; qx;w) of L where qx is the �-stable Jacobson-Morosov parabolic subalgebra of

(x; e; f).

Let

w = g
2
C
\ p

C
:

From Kostant and Rallis [K-R] we know that L:e (respectively L \K
C
.e) is dense

in g
(2)
C

(respectively g
(2)
C
\ p

C
). Also

dim l \ k
C
= dimg

(0)
C
\ k

C
= dimg

(2)
C
\ p

C
;

because e is noticed (see Lemma 2.1.1).

By de�nition l \ p
C
= p

x

C
.

Since

[px
C
; g(2)

C
\ p

C
] = g

(2)
C
\ k

C
;
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by Lemma 3.2.2, we must have

ŵ = g
(2)
C
:

Hence conditions 1, 2 and 3 in the above de�nition are veri�ed. Furthermore, we

know that

u =
M
j2N�

g
(j)
C
:

it follows that

g
(2)
C
? [u; [u; u]];

by Lemma 3.2.1.

To see that condition 5 holds it is enough to observe that

[g(i)
C
; g(j)

C
] � g

(i+j)
C

:

This observation, the de�nition of u and Lemma 3.2.1 imply that

[u; ŵ] ? ŵ:

From the representation theory of sl2 we have

[q \ k
C
; g2

C
\ p

C
] = u \ p

C
:

Hence

[u\ k
C
; u \ p

C
] � [q \ k

C
;w]:

Therefore F is well de�ned.

From a theorem of Kostant and Rallis [K-R], there is a bijection between the

non-zero nilpotent K
C
-orbits in p

C
and the K

C
-conjugacy classes of normal triples.

Two normal noticed triples (x; e; f) and (x0; e0; f 0) are K
C
conjugate if and only if

their corresponding triples (g
C
; q;w) and (g

C
; q0;w0) are K

C
conjugate. Hence, F

induces a one-to-one map from K
C
-conjugacy classes of S and the K

C
-conjugacy

classes of the triples of L. The next theorem tells us that such a map is also

surjective.

If q = l�u is a �-stable parabolic subalgebra of g
C
, then there exists z 2 ik such

that

u = sum of eigenspaces of adz for positive eigenvalues,

l = eigenspace of adz for eigenvalue 0,

�u = sum of eigenspaces of adz for negative eigenvalues [K-V].

Furthermore l is (�; �)-stable. Also u and �u are both �-stable. Finally

g
C
= �u� l � u;

� (u) = �u, and from Lemma 3.2.1 the spaces l, u and �u are mutually orthogonal

relative to �0.

Theorem 3.2.3. For any triple (g
C
; q;w) of L there exists a normal triple (x; e; f)

in S such that q is the Jacobson-Morosov parabolic subalgebra for (x; e; f) and

w = g
(2)
C
\ p

C
.

Proof. Let � (w) = �w. First, we prove that

[w; �w] � l \ k
C
:
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Clearly [w; �w] � k
C
since both w and �w are subsets of p

C
. Therefore it is enough to

show that

[w; �w] � l:

But

[w; �w] ? u;

because for all X 2 w, Y 2 �w and U 2 u we have

�0(U; [X;Y ]) = ��(U; � ([X;Y ])) = ��(U; [� (X); � (Y )])

= �(U; [� (Y ); � (X)]) = ��([� (Y ); U ]; � (X)) = �0([� (Y ); U ]; X) = 0;

since � is invariant, � (Y ) 2 w and [u; ŵ] ? ŵ.

Furthermore

[�u; �w] ? �w;

because for all B and C 2 �w and A 2 �u we have

�0([A;B]; C) = ��(� (C); � [� (A); � (B)]) = �0(� (C); [� (A); � (B)]) = 0;

since � (B); � (C) 2 w and � (A) 2 u and [u; ŵ] ? ŵ.

Moreover for all X 2 w, Y 2 �w and U 2 �u we have

�0(U; [X;Y ]) = ��(U; � ([X;Y ])) = ��(U; [� (X); � (Y )])

= ��([U; � (X)]; � (Y )) = �0([U; � (X)]; Y ) = 0;

since � is invariant, � (X) 2 �w and [�u; �w] ? �w. Hence [w; �w] ? �u.

It follows that [w; �w] � l, for l, u and �u are mutually orthogonal relative to �0.

Therefore we must have

[w; �w] � l \ k
C
:

Since L \K
C
has a dense orbit in w there exists Zw in w such that

[l \ k
C
; Zw] = w:

We now claim that gZw
C
\ �w = 0. Indeed, let y be a non-zero element of �w such

that [y; Zw] = 0. Then

�(w; y) = �([Zw; l \ kC]; y) = ��(l \ kC; [Zw; y]) = 0;

which contradicts the fact that w and �w are paired nondegenerately by the Killing

form � of g
C
; but

g
Zw

C
is �-orthogonal to [g

C
; Zw] � [l \ k

C
; Zw] = w:

Hence,

dim[ �w; Zw] = dim �w = dimw = dim l \ k
C

whence we have

[ �w; Zw] = l \ k
C
;

since Zw 2 w.

Fix a �-stable positive root system �+(g
C
; h

C
). To construct h

C
one starts with

a maximal abelian subspace t of k and adjoins a subspace a of p that is maximal
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with respect to the properties of being abelian and commuting with t (see Knapp

and Vogan [K-V]). Then h
C
is the complexi�cation of

h = t� a:

Furthermore since q is a �-stable parabolic subalgebra the subspaces u and [u; u]

have the properties mentioned in Proposition 1.2.4. If � is a weight of g
C
, then g

�

C

denotes the corresponding weight space and X� 2 g
�

C
is called a weight vector.

Choose x 2 k
C
such that for any simple root � of g

C
,

�(x) = 0 if g�
C
� l;

�(x) = 2 if g�
C
� ŵ;

�(x) = 1 otherwise.

The next step is to prove that w is the 2-eigenspace of adx on p
C
. Observe that,

since l, ŵ and the set of simple roots of g
C
whose root spaces are not in ŵ are

�-stable, we have

�(x) = ��(x); for all simple roots � of g
C
.

Furthermore two di�erent simple roots of g
C
cannot restrict to the same weight of

p
C
. (See [K-V], page 257). In other words t-weights in u\p

C
occur with multiplicity

1.

De�ne y and ŷ such that

u \ p
C
= [u\ k

C
; u \ p

C
]� y

and

u = [u; u]� ŷ:

Clearly y = ŷ \ p
C
.

Let � be a weight of p
C
such that g�

C
� ŵ. Then we only need to consider two

cases.

Case 1. � is the restriction of a simple root � and g
�

C
lies in ŷ. Then �(x) = 2 since

ŷ � ŵ. Hence �(x) = 2.

Case 2. � is a weight of [u\k
C
; u\p

C
]. Let X� be a non-zero vector in [u\kC; u\pC]

such that

[x;X�] = �(x)X�:

Then

X� 2 [u \ kC; y]� [u\ k
C
; [u\ k

C
; u \ p

C
]]:

Since ŵ ? [u; [u; u]] X� must be in [u \ k
C
; y]. But

u \ k
C
= [u\ k

C
; u \ k

C
]� v:

Therefore

X� 2 [v; y];
for ŵ ? [u; [u; u]].

Now any weight � such that g�
C
lies in v or y must be the restriction of a simple

root of g
C
, otherwise X� would be in [u; [u; u]].

Moreover, since

[u; ŵ] \ ŵ = f0g;
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we must have

�(x) = 1:

Hence

�(x) = 2:

Therefore w � g
(2)
C
\ p

C
.

Next we show that g(2)
C
\ p

C
� w.

If � is a weight of m but not of w, then either X� 62 [u \ k
C
; u \ p

C
] or X� 2

[u\ k
C
; u\ p

C
] for

m ? [u \ k
C
; [u\ k

C
; u \ p

C
]]:

In the �rst case we have �(x) = 1.

If X� 2 [u\kC ; u\pC] � [q\k
C
;w], then either X� 2 [l\kC ;w] or X� 2 [u\k

C
;w].

Since w is an L \K
C
-module, we must have

X� 2 [u\ kC;w]:

It follows that �(x) � 3.

Therefore if � = �jt, then X� must be in ŵ. Hence

w = g
(2)
C
\ p

C
and ŵ = g

(2)
C
:

Choose e = Zw. Note that the fact that [ �w; Zw] = l \ k
C
makes it possible to

�nd f in �w such that [e; f ] = x, but then since w is the 2-eigenspace of x in p
C
, �w

is the �2-eigenspace. Therefore [x; f ] = �2f . The triple (x; e; f) is normal. The

nilpotent e is noticed since dim l \ k
C
= dimw.

The following theorem completes the classi�cation.

Let l be a (�; �)-stable Levi Subalgebra of g
C
. De�ne the set of triples (l; q

l
;w

l
)

to have the same properties as the triples of L, replacing g
C
by l. Here q

l
is a

�-stable parabolic subalgebra of [l; l]. Then we have:

Theorem 3.2.4. There is a one-to-one correspondence between nilpotent K
C
-orbits

on p
C
and K

C
-conjugacy classes of triples (l; q

l
;w

l
) in L.

Proof. We noted before that a Levi subalgebra l contains a nilpotent element e 2 p
C

if and only if [l; l] does. Two Levi subalgebras are K
C
-conjugate if and only if their

derived subalgebras are conjugate. Each nilpotent e 2 p
C
can be put in a normal

triple (x; e; f) inside of the minimal Levi subalgebra l containing e. By Theorem

1.1.4 two minimal Levi subalgebras containing e are conjugate under Ke

C
. Hence

the theorem follows from Theorem 3.2.3

3.3. Example. Let g be sl(3;R), the set of 3 � 3 real matrices of trace 0. Then

g
C
= sl(3; C ), k

C
= so(3; C ), and p

C
is the space of 3�3 complex symmetric matrices.

The Cartan involution � is de�ned as �(X) = �XT for X 2 g. Denote by �Y , the

complex conjugate of a matrix Y 2 g
C
.

The set of orthogonal matrices (K
C
) preserves the set of symmetric matrices

(p
C
) under conjugation. The nilpotent orbits of K

C
on p

C
are parametrized by the

partitions of 3. Therefore, there are exactly two non-zero nilpotent classes since
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the zero nilpotent class corresponds to the partition [1; 1; 1]. A computation shows

that the following matrices

H1 =

0
@ 0 i 0

�i 0 0

0 0 0

1
A ;H2 =

0
@1 0 0

0 1 0

0 0 �2

1
A ;

E1 =
1

2

0
@i 1 0

1 �i 0

0 0 0

1
A ; E2 =

0
@0 0 i

0 0 1

i 1 0

1
A ; E3 =

0
@0 0 �i
0 0 �1
i 1 0

1
A

generate the only �-stable Borel subalgebra b of g
C
up to conjugacy. Let

b = CH1 � CE3 � CH2 � CE1 � CE2 :

Of course b is conjugate to the set of upper triangular matrices of sl(3; C ).
The only (�; �) stable Levi subalgebra of gC, other than gC, is b = CH1 + CH2 .

Let u =
P

i
CEi .

We see that l \ k
C
= CH1 and m = CE1 � CE2 . Let w1 = CE1 and w2 = CE2 .

Clearly, L\K
C
has a dense orbit on w1 and w2 respectively for [H1; E1] = 2E1 and

[H1; E2] = E2. Also

dim l \ k
C
= dimw1 = dimw2 = 1:

For each wi one veri�es easily that the triple, (g
C
; b;wi), satis�es all the require-

ments speci�ed above.

Thus we obtain the following correspondence between non-zero nilpotent orbits

of pC and elements of L:

(H1; E1; �E1) ! (g
C
; b;w1);

(2H1; E2; �E2) ! (g
C
; b;w2):

3.4. An important special case. In some special cases the �-stable parabolic

subalgebra in the triple fg
C
; q;wg is characterized by a dimension criterion similar

to that of the distinguished parabolic subalgebras that play an essential role in the

Bala-Carter theory. One of these cases is very important because it classi�es all

the noticed orbits of the classical real Lie algebras of type B, C and D and those of

the exceptional algebras of type E6(2), F4(4), G2(2). We shall say more about this

in the next section.

De�ne L to be the set of triples fg
C
; q;wg of L such that

1. dim l \ k
C
= dim

u\p
C

[u\k
C
;u\p

C
]
.

2. u \ p
C
= [u\ k

C
; u\ p

C
]�w.

Let S be the set of KS-triples (x; e; f) of g
C
such that e is even and noticed, then

we have a map from S to L which associates a triple (x; e; f) of S to an element

fg
C
; q;wg of L where q is the �-stable Jacobson-Morozov parabolic subalgebra rela-

tive to (x; e; f) and w = g
2
C
\p

C
. From the previous results (see Theorem 2.1.6) it is

clear that such a map is well de�ned and induces a one-to-one map from K
C
-orbits

of S to the K
C
-conjugacy classes of the triples of L, which is also surjective by the

following theorem.

Theorem 3.4.1. For any triple fg
C
; q;wg of L there exists a normal triple (x; e; f)

in S such that q is the �-stable parabolic subalgebra relative to (x; e; f) and w =

g
(2)
C
\ p

C
.
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Proof. From Theorem 3.2.3 fg
C
; q;wg corresponds to a normal triple (x; e; f) of S

such that w= g
(2)
C
\ p

C
. But from the de�nition of w and from Theorem 2.1.6 the

triple (x; e; f) belongs to S. The theorem follows.

We may summarize the foregoing results as follows.

Theorem 3.4.2. There is a one-to-one correspondence between even nilpotent K
C
-

orbits on p
C
and K

C
conjugacy classes of triples (l; q

l
;w

l
) where l is a (�; �)-stable

Levi subalgebra of g
C
and

0. q
l
= m

l
� u

l
is a �-stable parabolic subalgebra of [l; l].

1. w
l
� u

l
\ p

C
.

2. w
l
is M

l
\K

C
stable; (M

l
connected Lie group of G

C
with Lie algebra m

l
).

3. w
l
has a dense M

l
\K

C
orbit.

4. dimm
l
\ k

C
= dimw

l
.

5. dimm
l
\ k

C
= dim

u
l

\p
C

[u
l
\k

C
;u
l
\p

C
]
.

6. u
l
\ p

C
= [u

l
\ k

C
; u

l
\ p

C
]�w

l
.

Proof. Similar to the proof of Theorem 3.2.4.

Remarks. It is possible to have more than two noticed elements associated to the

same �-stable parabolic subalgebra. For example, in sl(7;R) the partitions [7],

[6,1], [5,2] and [4,3] are all associated to the same parabolic subalgebra, in this

case a Borel subalgebra. Of course this shows that there can be more than two

w's associated with the same parabolic subalgebra. Moreover the correspondence

does not necessarily associate a �-stable parabolic to its Richardson nilpotent (see

Humphreys [H2] for the de�nition of a Richardson element). For example, the

parabolic subalgebra q associated with the partition [4,2,1] contains a representative

X of [5,2]. AndX is the Richardson nilpotent for q. But since q is not the Jacobson-

Morosov for [5,2] this nilpotent is not assigned to q by the correspondence.

4. Description of noticed orbits in simple real Lie algebras

4.1. Simple exceptional real Lie algebras. Djokovi�c [D1, D2] (see also [C-Mc])

has computed the reductive centralizer for all real nilpotent orbits in the case

where g is an exceptional simple real Lie algebra. The results are given in several

tables, one for each algebra. Hence the noticed orbits can be easily identi�ed from

Djokovi�c's tables. They are the ones for which k
(x;e;f)
C

= 0. The last two colums give

the isomorphism type of k(x;e;f)
C

and g
(H;E;F ) respectively. A study of the tables

reveals that

E6(2); E6(6); E7(7); E8(8); F4(4); G2(2)

are the only exceptional simple real Lie algebras to admit noticed nilpotent orbits.

They are quasi-split.

A real form, g, of g
C
is called quasi-split if there is a subalgebra, b, of g such that

b
C
= b+ ib is a Borel subalgebra of g

C
.

The following proposition characterizes quasi-split real forms.

Proposition 4.1.1 (Rothschild). g contains a regular nilpotent i� g is quasi-split

i� g contains a regular semisimple H such that adH has all real eigenvalues.
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Proof. See Rothschild [Rot].

An element z of g is said to be regular if dimG.z � dimG.y for all y in g.

Hence,

Theorem 4.1.2. An exceptional simple real Lie algebra is quasi-split if and only

if it contains a noticed nilpotent element.

This is not the case in general, as we shall see below. Now we turn our attention

to the classical algebras.

4.2. Simple classical real Lie algebras. Let g be a real classical Lie algebra. It

is known [S-S, B-Cu, C-Mc] that the nilpotent orbits of G in g are parametrized by

signed Young diagrams. Let (H;E; F ) be a standard triple in g. Denote by V the

standard repesentation of g, regarded as an sl2-module under the action of the real

Lie algebra generated by (H;E; F ). Then

V =
M
r�0

M (r)

where each M (r) is a direct sum of irreducible (r+1)-dimensional sl2-modules. Let

[d1; d2; : : : ; dk] be a partition of dimRV . Then the di's are exactly the dimensions

of the irreducible summands of V (see [C-Mc]). For r � 0, denote by H(r) the

highest weight space in M (r). From the sl2 theory we have

dimH(r) = mult(�r ;M (r))

where �r is the irreducible representation of sl2 of highest weight r. If g is not su
�
2n

or sln(R), then V carries a g-invariant form h:; :i which induces a nondegenerate

bilinear form (:; :)r on H(r) as follows:

if u; v 2 H(r), then (u; v)r = hu; F rvi.
It turns out that the induced forms (:; :)r determine the ambient form h:; :i uniquely
[C-Mc].

The reductive centralizer C = g
(x;e;f)
C

can be described as a direct sum of simple

complex Lie algebras [S-S, Ca, C-Mc]. The nilpotent orbits of G
C
in g

C
are also

parametrized by certain partitions. Let r
i
be the number of parts equal to i in the

description of the partition associated to e.

For type An

C = (
M
i

Ar
i
�1)� Tk

where k = (No. of r
i
)� 1, and Tk is a torus of dimension k.

For type Cn

C = (
M
iodd

Cr
i
=2)� (

M
i even; ri even

Dr
i
=2) � (

M
i even; ri odd

B(r
i
�1)=2):

For type Bn and Dn

C = (
M
i even

Cr
i

=2)� (
M

iodd; ri even

Dr
i

=2) � (
M

i odd; ri odd

B(r
i

�1)=2):

In the above formulaeD1 must be interpreted as a 1-dimensional torus T1 wherever

it occurs.
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To classify the noticed nilpotent K
C
-orbits in p

C
we shall proceed as follows:

maintaining the above notations, for each real algebra we will determine which

signed Young diagrams will force k(x;e;f)
C

to be zero. Since

g
(x;e;f)
C

= k
(x;e;f)
C

� p
(x;e;f)
C

;

we should be able to carry out our analysis on each real algebra separately by

indentifying which signed Young diagrams produce a real centraliser g(H;E;F ) in p.

We are using Helgason's [He] realizations of the classical real algebras.

Type An.

Theorem 4.2.1. The non-zero noticed nilpotent orbits of sln(R) are parametrized

by partitions of n with distinct parts. If such a partition is even, then it corresponds

to two orbits labeled by I and II. The algebra su
�
2n has no non-zero noticed nilpotent

orbit. Also su(p; p + 1) has exactly one non-zero noticed nilpotent orbit, which is

parametrized by a one-row signed Young diagram of signature (p; p + 1), su(p; p)

has exactly two non-zero noticed nilpotent orbits, each is parametrized by a one-

row signed Young diagram of signature (p; p). If jp� qj � 2, then su(p; q) has no

non-zero noticed nilpotent orbits.

Proof.

1. sln(R). Let g = sln(R). Then k = son and p = set of n � n symmetric real

matrices. The nilpotent orbits of g are parametrized by Young diagrams of size n,

except that partitions having only even terms correspond to two orbits, denoted

as usual by I and II. [C-Mc]. Here g
C
= sln(C ) and its nilpotent orbits are also

parametrized by partitions of n [C-Mc]. Moreover the Young diagram of the com-

plexi�cation of a real orbit of g is obtained by omitting the signs and the numeral in

the case of \even" orbits, that is, orbits parametrized by partitions with even parts

only. Therefore for an orbit parametrized by a given partition �d to be noticed, that

is for k(x;e;f)
C

to be trivial, all the parts of �d must be distinct since otherwise C will

have a summand of type Am and any real form of Am has a non-trivial compact

part. Hence if e is noticed, then the associated partition has distinct parts and

g
(x;e;f)
C

= Tk:

It remains to show that if the partition has distinct parts, then the torus part Tk
of the centralizer C is in p

C
.

Oberve that the partition �d = [n] is distinguished [B-C1]. Hence it is noticed.

Therefore we shall consider partitions made of two or more distinct parts. Let
�d = [d1; d2; : : : ; dk+1], k � 1, be the partition of n with distinct parts associated

with e. Consider the set of n � n diagonal matrices Di for 1 � i � k de�ned as

follows:

Let ci = (
iP

j=1

dj)�di. Then Di is the n�n diagonal matrix with di's consecutive

1's starting at row ci+1 and the last dk+1 entries are all equal to
�di
dk+1

. For example
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D1 =

0
BBBBBBBBBB@

Id1 0 : : : : : : : : : 0

0 0 : : : : : : : : : 0
...

...
. . .

...
...

...

0 0 : : : �d1
dk+1

... 0

0 0 : : : : : :
. . . 0

0 0 : : : : : : : : : �d1
dk+1

1
CCCCCCCCCCA

:

Here Idi denotes the di � di identity matrix. The diagonal matrices Di have trace

zero and commute with (x; e; f). Furthermore, by construction they are indepen-

dent and generate Tk. Hence

dimg
(x;e;f)
C

= k:

Since all the matrices Di described above belong to p
C
we must have

dimp
(x;e;f)
C

� k:

Thus by dimensionality considerations, we obtain

g
(x;e;f)
C

= p
(x;e;f)
C

:

Hence, the non-zero noticed nilpotent orbits of sln(R) are parametrized by parti-

tions of n with distinct parts. If such a partition is even, then it corresponds to

two orbits labeled by I and II.

2. su(p; q). Let g = su(p; q). Then (see Helgason [He])

k =

��
A 0

0 B

���A 2 u(p); B 2 u(q); trace(A+ B) = 0

�
:

The nilpotent orbits of su(p; q) are parametrized by signed Young diagrams of

signature (p; q) [C-Mc]. The complexi�ed complex orbits of these real orbits are

parametrized by a subset of the set of partitions of n = p+ q.

Observe that if p = q, then the one-row signed Young diagram of size 2p

describes a nilpotent of su(p; q). Similary if jp � qj = 1, then the one-row signed

Young diagram of size 2p + 1 describes a nilpotent of su(p; q). In both cases the

corresponding complex orbits are distinguished, hence noticed.

Let �d = [d1; d2; : : : ; dk+1], k � 1, be a partition of n with distinct parts. Assume

that �d is the complexi�cation of a nilpotent orbit of g. Then it is clear that the

diagonal matrices of the form
p
�1Di where Di is the matrix, de�ned above, gen-

erate Tk and all the independent matrices
p
�1Di belong to k

C
. Again in this case

we have

dimg
(x;e;f)
C

= k:

But

dim k
(x;e;f)
C

� k:

Thus by dimensionality considerations, we obtain

g
(x;e;f)
C

= k
(x;e;f)
C

:

This shows that if e is noticed, k must be zero which implies that e is distinguished.

It follows that su(p; p+1) has exactly one non-zero noticed nilpotent orbit, which is

parametrized by a one-row signed Young diagram of signature (p; p+1), su(p; p) has
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exactly two non-zero noticed nilpotent orbits, each is parametrized by a one-row

signed Young diagram of signature (p; p).

3. su
�
2n. Let g = su

�
2n. The nilpotent orbits of g are parametrized by partitions

of n. To obtain the partitions associated with their complexi�cation we have to

replace each row of their Young diagrams with two copies of itself [C-Mc]. Hence

the complexi�ed orbits are parametrized by partitions of 2n with no distinct parts.

Therefore su�2n has no non-zero noticed nilpotent orbit.

Types Bn and Dn.

Theorem 4.2.2. The non-zero noticed nilpotent orbits of so(p; q) are parametrized

by Young diagrams of signature (p,q) such that:

(1) all rows are odd and can be repeated atmost twice,

(2) two rows of the same length must have their leftmost boxes labeled by di�erent

signs,

(3) if all the rows have an even number of boxes labeled +, or all the rows have

an even number of boxes labeled {, then one numeral I or II is attached.

There are no non-zero noticed nilpotent orbits in so
�
2n.

Proof.

1. so(p; q). Let g = so(p; q). Then the nilpotent orbits in g are parametrized by

signed Young diagrams of signature (p; q) such that rows of even length occur with

even multiplicity and have their leftmost boxes labeled +. Some of these diagrams

get Roman numerals attached to them as follows. If all rows have even length, then

two Roman numerals, each I or II are attached. If at least one row has odd length

and all such rows have an even number of boxes labeled +, or all such rows have

an even number of boxes labeled {, then one numeral I or II is attached [C-Mc].

Moreover g
C
= s0p+q(C ) and its nilpotent orbits are also parametrized by partitions

of p + q in which even parts appear with even multiplicity [C-Mc]. To obtain the

Young diagram of the complexi�cation of a real orbit of g we omit the signs. If the

associated partition is very even that is, every part is even and appears with even

multiplicity, we omit the �rst numeral. If it is not very even we omit the numeral.

For an orbit parametrized by a given partition �d to be noticed, that is for k(x;e;f)
C

to be trivial, all the parts of �d must be odd and repeated atmost twice. Otherwise

the centralizer C will have a summand of type Bl or Cm or Dn with n � 2. Hence

if e is noticed, then

g
(x;e;f)
C

= Tk:

Note that k is the number of parts with multiplicity 2. Cleary if k = 0, then e is

distinguished.

We now show how to construct the torus part Tk of the centralizer C in p
C
. This

will make it possible to identify which of the nilpotents whose partitions have all

parts repeated atmost twice are noticed.

Let �d = [d1; d2; : : : ; dl] be a partition of p + q of signature (p; q) which consists

of odd parts repeated atmost twice. Let (H;E; F ) be a KS-triple associated with
�d. Then the standard representation V of g can be decomposed as a direct sum of

irreducible hH;E; F i-modules of weight ri = di � 1. The centralizer of g preserves

each M (ri). It also preserves the g-invariant symmetric form, h:; :i, carried by V .

Since all the ri's are even (see [C-Mc]), (:; :)ri is symmetric and the signature of h:; :i
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on M (ri) is obtained by starting with the signature of (:; :)ri and replacing each �
sign by an alternating sequence of signs of length di. Therefore if di has multiplicity

1, there are only two possible labellings since the one-dimensional highest weight

space is labelled either with a + or a {. However if di is repeated twice, then we

have three possible ways of labelling M (ri). It is useful to consider the following

example:

Assume that we are trying to label M (2) from the standard representation of

so(3; 3) with regard to the partition [3; 3]. Since symmetric real forms are equivalent

up to signature, we can rearrange the basis of V such that

M (2) = he1; e2; e3i � he4; e5; e6i:

It is understood that each basis vector denotes a one-dimensional weight space in

an sl2 irreducible module. In our notation (e1; e4) form a basis of H(2). Clearly we

can label M (2) in three di�erent ways:

+ �+ + �+ �+ �
� +� + �+ �+ �

The �rst row represents the labels of e1; e2 and e3. The second row represents the

labels of e4; e5 and e6.

In general if the part d
l
is represented twice in the partition �d, then M (r

l
) is the

direct sum of two irreducible sl2-modules of highest weight r
l
. Furthermore V has

a basis where

M (r
l
) = hek; ek+1; : : : ; ek+rli � hek+rl+1; ek+rl+2; : : : ; ek+2rl+1i:

Once again (ek; ek+rl+1) is a basis for H(r
l
) and (ek+rl ; ek+2rl+1) is a basis for

H(�r
l
).

Assume that M (rl) is labelled as follows:

+ �+ �+ � � � � +

� +� +� � � �+ �

Let Z be a (p + q) � (p+ q) matrix such that

Zei = ei+rl+1 and Zei+rl+1 = ei if k � i � k + rl else Zei = 0:

Then

(ek; Zek)rl = (ek; ek+rl+1)rl = �(Zek; ek)rl = 0;

(ek+rl+1; Zek+rl+1)rl = (ek+rl+1; ek)rl = �(Zek+rl+1; ek+rl+1)rl = 0;

(ek; Zek+rl+1)rl = (ek; ek)rl = �(ek+rl+1; ek+rl+1)rl = �(Zek ; ek+rl+1)rl :

Hence (; )rl is invariant under Z and so is the ambient form h:; :i. Furthermore

it easy to see that Z commutes with (H;E; F ). Therefore Z generates a one-

dimensional factor of the centralizer g
(H;E;F ). By de�nition Z is a Hermitian

matrix. So all its eigenvalues are real and it lies in the vector part of a Cartan

subalgebra of g. We conclude that Z is G-conjugate to some element of p. (See

Helgason [He].)

A similar analysis can be carried out for the other two labellings. In both cases

one de�nes Z as follows:

Zei = ei+rl+1 and Zei+rl+1 = �ei if k � i � k + rl else Zei = 0:
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It is easy to verify that Z preserves (; )rl . Since Z is a skew-hermitian matrix, all

its eigenvalues are imaginary. Therefore Z is G conjugate to some element of k.

(See Helgason [He].)

Observe that the matrices Z described above commute and are independent.

Also there are exactly k such matrices for each orbit. Furthermore, without loss

of generality we can assume that (x; e; f) is the Cayley transform of the KS-triple

(H;E; F ). Therefore all the matrices Z commute with (x; e; f) and generate Tk.

Hence

dimg
(x;e;f)
C

= k:

In the �rst case all the Z's are in p
C
. Hence

dimp
(x;e;f)
C

� k:

Thus by dimensionality considerations, we obtain

g
(x;e;f)
C

= p
(x;e;f)
C

:

In the two other cases all the Z's are in k
C
. Hence

g
(x;e;f)
C

= k
(x;e;f)
C

:

2. so�2n. Let g = so
�
2n. Then the nilpotent orbits are parametrized by signed Young

diagrams of size n and any signature in which rows of odd length have their leftmost

boxes labeled + [C-Mc]. Therefore we only need to consider partitions with distinct

odd parts. Let �d = [d1; d2; : : : ; dl] be such a partition of n. Now so
�
(2n)

acts on a

2n-dimensional complex space V and can be de�ned as the subalgebra of so(2n; C )
that leaves invariant a skew-hermitian form h:; :i on V . With the above notation V

can be seen as a direct sum of Mri 's and each of them is made of two irreducible

modules of dimension di. Since all the ri's are even (see [C-Mc]), (:; :)ri is a skew-

hermitian. De�ne Z:ek =
p
�1ek for ek 2 Mri and zero elsewhere. Then clearly

Z preserves Hri and belongs to g(E;H;F ). But Z is a skew-hermitian matrix and

consequently is G-conjugate to some element of k. Consequently

dim k
(x;e;f)
C

� k:

Thus by dimensionality considerations, we obtain

g
(x;e;f)
C

= k
(x;e;f)
C

:

The theorem follows.

Type Cn. Let g = sp(p; q). Then the nilpotent orbits in g are parametrized by

signed Young diagrams of signature (p; q) such that rows of even length have their

leftmost boxes labeled + [C-Mc].

Nilpotent orbits of spn(R) are parametrized by signed Young diagrams of size

2n and any signature in which odd rows appear with even multiplicity and begin

with + [C-Mc].

Also g
C
= spn(C ) and its nilpotent orbits are parametrized by a partition of 2n

in which odd parts occur with even multiplicity.

A discussion similar to the one given in the previous section gives the next

theorem.

Theorem 4.2.3. The non-zero noticed nilpotent orbits of spn(R) are parametrized

by signed Young diagrams of size 2n such that

(1) all rows are even an can be repeated atmost twice,
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(2) two rows of the same length must have their leftmost boxes labeled with dif-

ferent signs.

There are no non-zero noticed nilpotent orbits in sp(p; q).

We have seen that the only exceptional simple real Lie algebras admitting nilpo-

tent orbits are the quasi-split ones. This is not true in the case of the classical

simple real Lie algebras, as the following example indicates.

Let g = so(6; 3). Then from Theorem 4.2.2, the orbit parametrized by the signed

Young diagram:

Figure 1

is noticed but g is not quasi-split.

Remark. We note that the noticed orbits of the simple real Lie algebras of type Bn,

Cn and Dn are even. This can be seen through an analysis of the weighted Dynkin

diagram associated with their complex counterparts (see [C-Mc]). Therefore our

classi�cation, when restricted to the above algebras, is similar to the Bala-Carter

classi�cation.

Noticed nilpotent orbits Types and Chromosomes. The above description

of noticed nilpotent orbits will be translated in the language of \Type" (see [B-Cu]

for the de�nition of Type). Except for sln(R) our description will use the work

of Djokovi�c [D3] as a reference. Djokovi�c used \Chromosomes" which are roughly

speaking signed and unsigned Young diagrams to describe nilpotent orbits of the

classical Lie algebras and then translated his description into the language of Type.

A gene, as Djokovi�c de�nes it, can be interpreted as a row of a Young diagram.

The rank of a gene is the size of the row. In the case of signed Young diagrams, if

a row of length n ends with a +, we write g+(n) to denote the corresponding gene.

Similary g�(n) corresponds to the row of length n ending with {. For unsigned

Young diagrams we use g(n). The signature (r+; r�) of a gene is the signature of the

corresponding row. A chromosome is a non-negative integral linear combination of

genes. The signature of a chromosome is the sum of the signatures of its constituent

genes. For example the chromosome g+(5)+g+(3)+g+(1) corresponds to the Young

tableau in Figure 1. The \Type" representation of this orbit is �+
4 (0) + �+

2 (0) +

�+
0 (0). The description is given in the following table where � = �. Simple

algorithms to �nd � are given in [D3].

Remarks. In the case of sln(R) if all the k's are odd, then we have two orbits

([B-Cu, page 355]). For so(p; q) and spn(R) 2�
�

k
(0) = �+

k
(0)+��

k
(0). Furthermore,

in the case of so(p; q) if for all the genes r+ is even or if for all the genes r� is even,

then we have two orbits.
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Table 2

ALGEBRA TYPES CHROMOSOMES

sln(R)
P

ak�k(0)
P

akg(k + 1) 0 � ak � 1

su(p; q) �+
2p�1(0), �

�
2p�1(0) g+(2p), g�(2p) q = p

��
2p(0) g�(2p+ 1) q = p + 1

so(p; q)
P

k:even

ak�
�

k
(0)

P
k:even

akg
�(k + 1) 0 � ak � 2

spn(R)
P
k:odd

ak�
�

k
(0)

P
k:odd

akg
�(k + 1) 0 � ak � 2

5. Noticed principal orbits in simple real Lie algebras

5.1. Principal nilpotent element. Let e be in p
C
. Then e is principal if and

only if K
C

.e is a maximalK
C
-orbit in p

C
[K-R] that is if and only if

dimK
C

.e � dimK
C

.e0 for all e0 2 p
C
:

If the orbit G.�Rcorresponds to the orbit KC

.�C, then

dimC KC

.�C =
1

2
dimRG.�R=

1

2
dimC GC

.�C:

Kostant and Rallis give several characterizations of a principal nilpotent of p
C
.

We will use the following criterion due to them. We will say that e is principal if

and only if

dim K
C

.e = dim p
C
� dimaC;

where aC is the complexi�cation of a maximal abelian subspace a of p. The dimen-

sion of a is called the real rank of g (see Helgason [He]). The following theorem

gives a characterization of the quasi-split simple real Lie algebras g in terms of the

noticed principal elements.

Theorem 5.1.1. Let g be a simple real Lie algebra. Then g is quasi-split if and

only there exists a nilpotent element �C of pC such that �C is noticed and principal.

Proof. If g is an exceptional simple real Lie algebra, then an analysis of Djokovi�c's

tables [D2, D1] shows that the principal nilpotent orbit is noticed if and only if g is

quasi-split. Now assume that g is a classical real Lie algebra. If g is equal to sln(R),
su(p; q), or spn(R), then Theorems 4.2.1 and 4.2.3 tell us that the principal nilpotent

is noticed because it is also regular in each case. Moreover, since sp(p; q), su�2n and

so
�
2n have no non-zero noticed elements, we only need to give a proof for the case

where g = so(p; q). First we will give a general description of the principal orbit

of g which corresponds to a maximal K
C
-orbit in p

C
under the Kostant-Sekiguchi

correspondence, and then we shall prove that such an orbit is noticed if and only

if g is quasi-split. In our case the principal orbit is characterized by its dimension

pq� q. The dimension of the complex nilpotent orbits of type Bn and Dn are given

by

2n2 + n� 1

2

X
i

si
2 +

1

2

X
i odd

ri(5.1.2)
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and

2n2 � n� 1

2

X
i

si
2 +

1

2

X
iodd

ri;(5.1.3)

respectively, where ri and si are de�ned as follows: if [d1; d2; : : : ; dl] is the partition

associated with the nilpotent orbit. Put ri = jfjjdj = igj and si = jfjjdj � igj.
(See [C-Mc].)

We consider two cases:

Case 1. p = q.

Consider the orbit G.�Rparametrized by the following Young diagram:

Figure 2

If p is even, then there are two such orbits and the Young diagram should be labeled

with Roman numerals I or II (see [C-Mc]).

The associated complex orbit G
C

.�C is parametrized by [2p� 1; 1]. Then r1 = 1,

r2p�1 = 1, s1 = 2, and si = 1 for 2 � i � 2p� 1. Using formula 5.1.3 with n = p

we �nd that

dimG
C

.�C = 2p2 � p� 1

2
(2p+ 2) + 1 = 2p2 � 2p:

Hence

dimK
C

.�C = p2 � p:

Therefore the above orbit is principal. From Theorem 4.2.2 it is also noticed.

Finally so(p; p) is quasi-split.

Case 2. p > q.

Consider the orbit G.�Rparametrized by the following Young diagram:

Figure 3
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where the �rst row has length 2q+ 1 and the remaining p� q� 1 rows have length

1. This orbit is noticed by Theorem 4.2.2.

If q is even, then there are two such orbits and the Young diagram should be

labeled with Roman numerals I or II (see [C-Mc]).

The associated complex orbit G
C

.�C is parametrized by [2q + 1; 1p�q�1]. Thus

r1 = p� q � 1, r2q+1 = 1, s1 = p� q, and si = 1 for 2 � i � 2q + 1. Using formula

5.1.3 with n = p+q
2

we �nd that

dimG
C

.�C =
(p+ q)2

2
� (p+ q)

2
� 1

2
((p � q)2 + 2q) +

1

2
(p� q) = 2pq� 2q:

Using formula 5.1.3 with n = p+q�1
2

we have

dimG
C

.�C =
(p+ q)2 � 2(p+ q) + 1

2

� (p+ q � 1)

2
� 1

2
((p� q)2 + 2q) +

1

2
(p� q) = 2pq � 2q:

In either case we obtain

dimK
C

.�C = pq � q:

Again the orbit K
C

.�C is principal and noticed if and only if [2q+ 1; 1p�q�1] dom-

inates every other admissible partition that is, if and only if jp� qj � 2 ([C-Mc]),

that is, if and only if g is quasi-split. The result follows.

We shall need the following lemma.

Lemma 5.1.4. Let l be a minimal (�; �)-stable Levi subalgebra containing a prin-

cipal nilpotent e of p
C
. Then l is a minimal Levi subalgebra containing e.

Proof. Let (x; e; f) be a KS-triple containing e. We have proved [Proposition 1.1.3]

that l = g
t

C
where t is a maximal toral subalgebra of ke

C
. In fact t � k

(x;e;f)
C

. From

King [Ki] we know that if e is principal, then

g
(x;e;f)
C

= k
(x;e;f)
C

:

Hence t is a maximal toral subalgebra of ge
C
and l is a minimal Levi subalgebra

containing e [C-Mc].

We wish to thank David Vogan from MIT and Roger Carter from the University

of Warwick (England) for their suggestions about the proof of the following propo-

sition. The result was also mentioned by Collingwood and McGovern [C-Mc]. But

they did not provide a proof.

The Bala-Carter theory associates each G
C
-nilpotent orbits of g

C
to pair (m; pm)

where m is a Levi subalgebra of g
C
and pm is a distinguished parabolic of the

semi-simple algebra [m;m] (see [Ca]). Maintaining the above notations we have:

Proposition 5.1.5. Using the above notations (m; pm) and (m; qm) are conjugate

under G
C
if and only pm and qm are conjugate under M , the connected subgroup

of G
C
with Lie algebra m.

Proof. If pm and qm are M -conjugate, then they are necessarily G
C
-conjugate since

M � G
C
. Hence (m; pm) and (m; qm) are GC

-conjugate.

Suppose that (m; pm) and (m; qm) are conjugate under GC
. Let g 2 G

C
be a con-

jugating element. Then g induces an automorphism on the semisimple part [m;m]

of m. Consequently to prove that pm and qm are conjugate under M it is enough
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to show that
N(m)

M
acts trivially on conjugacy classes of distinguished parabolic

subalgebras, where N (m) denote the normalizer of m in G
C
. Let

Aut(m)

Int(m)
denote the

outer automorphisms of m. It is isomorphic to the group of automorphisms of the

Dynkin diagram of m (see [Kn]). Int(m) should be understood as the set of inner

automorphisms of m.

We have M � Ker(� �') where � and ' are the projection and inclusion maps

respectively, as de�ned in the following sequence:

N (m)
'�! Aut(m)

��! Aut(m)

Int(m)
�! 1

giving

N (m)

Ker(� � ') �
Aut(m)

Int(m)
:

and

1 �! Ker(� � ')
M

�! N (m)

M
�! N (m)

Ker(� � ') �! 1:(5.1.6)

Hence, the only important elements of
N(m)

M
are those outside of

Ker(��')

M
.

We shall prove that the outer automorphisms of m do not change the conju-

gacy classes of distinguished parabolic subalgebras. It is known that the group

of automorphisms of the Dynkin diagram is a cyclic group of order 2 for types

Al(l � 2), Dl (l > 4), and E6. It is S3, the permutation group on three letters, for

D4. Otherwise it is trivial (see [He]).

Bala and Carter [B-C2] give a description of the classes of semisimple subalgebras

of parabolic type. In every case, all but atmost one simple component has type

Al. Bala and Carter [B-C1] also give a description of the weighted Dynkin diagram

of each class of distinguished simple parabolic subalgebras. In type Al, the only

distinguished parabolic subalgebras are the Borel subalgebras. Thus, if all the

simple parts are of type Al (l � 2), then pm and qm are conjugate under M .

Suppose there is a simple component not of type Al. A careful analysis of the

weighted Dynkin classes of distinguished simple parabolic subalgebras shows that

they are invariant under their nontrivial diagram automorphisms. Thus they are

invariant under the outer automorphisms of m. Hence they are invariant under
N(m)

M
. It follows that pm and qm must be M -conjugate.

Moreover we have:

Proposition 5.1.7. Let e be a nilpotent element of g
C
and let l be a minimal Levi

subalgebra containing e. Then G
C

.e\ l = L.e, where L is the connected subgroup of

G
C
with Lie algebra l.

Proof. Since L � G
C
it is clear that

L.e � G
C

.e \ l:
Let e0 be a nilpotent element of G

C

.e \ l. From the Bala-Carter theory we can

associate a pair (l; pl) to G
C

.e where pl is a distinguished parabolic subalgebra

of [l; l]. Similarly we can associate a pair (l0; pl0) to G
C

.e0. Since e and e0 are G
C
-

conjugate the two pairs (l; pl) and (l
0; pl0 ) are also conjugate under GC

. In particular

l is G
C
-conjugate to l0. Therefore l is a minimum Levi subalgebra containing e0.

Then the Bala-Carter theory tells us that we can �nd a pair (l; ql), where ql is
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a distinguished parabolic subalgebra of [l; l] containing e0, which is G
C
-conjugate

to (l; pl). From Proposition 5.1.5 we know that pl and ql are conjugate under L.

From the Bala-Carter theory we know that e and e0 are Richardson elements of

pl and ql respectively. Since the Levi parts of pl and ql are L-conjugate they are

\associated" in Johnston's and Richardson's sense (see [J-R], [H2]). Thus e0 2 L.e.
The proposition follows.

Now we are ready to prove the main result on principal nilpotents in p
C
.

Theorem 5.1.8. Let e be a nilpotent principal element of p
C
. Then for any normal

triple (x; e; f) corresponding to a triple (l; q
l
;w

l
) as described in the classi�cation

Theorem 3.2.4:

1. e is regular in l \ p
C
,

2. the the real form l0 of l is quasi-split,

3. if q
l
= m� v is a Levi decomposition of q

l
then dimm \ k

C
= dim

v\p
C

[v\k
C
;v\p

C
]

and ql is a Borel subalgebra of l,

4. g and l0 have the same real rank.

Proof. From Kostant and Rallis [K-R] e lies in the closure of a principal orbit of

L \K
C
on l \ p

C
. Therefore we can �nd a nilpotent e0 2 l \ p

C
such that

e 2 L \K
C

.e0 � K
C

.e0:

Thus

K
C

.e � K
C

.e0:

Since e is principal

K
C

.e = K
C

.e0:

It follows that e0 is G
C
-conjugate to e. From Lemma 5.1.4 and Proposition 5.1.7

G
C

.e \ l = L.e:

Thus e and e0 are conjugate under L. But

dimL \K
C

.e = dimL \K
C

.e0 =
1

2
dimL.e:

This implies that L \K
C

.e is a principal orbit in l \ p
C
.

Moreover, e is noticed in l by de�nition. By Theorem 5.1.1 the real form l0 of l

is quasi-split. This implies that e is regular in l, and so is distinguished. Therefore

ql is a Borel subalgebra of l and since e is an even nilpotent

dimm \ k
C
= dim

v \ p
C

[v \ k
C
; v \ p

C
]
from Theorem 2.1.6.

Let a be a maximal abelian subspace of p and let m be the centralizer of a in k. By

the Kostant-Sekiguchi correspondence there is a real KS-triple (H;E; F ) in g such

that l0 = k
t where t is a maximal toral subalgebra of k(H;E;F ). Thus we have

k
(H;E;F ) � k

H = m:

Hence a � l0. This implies that the real rank of l0 is equal to the dimension of

the subspace a which is also the real rank of g by de�nition. The desired result

follows.
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The previous theorem and some results of Bala and Carter [B-C2, B-C1] allow

us to describe the type of the semi-simple part of the quasi-split real form of l. The

next table gives the type of [l; l] and [l0; l0] for the non-quasi-split cases.

Table 3

Algebra [l; l] [l0; l0]

su(p; q) sl2q+1(C ) su(q + 1; q)

su
�
2n sln(C ) � sln(C ) sln(C )

so(p; q) so2q+1(C ) so(q + 1; q) p + q even

so(p; q) so2(q+1)(C ) so(q + 2; q) p + q odd

so
�
2n sln(C ) su(n

2
; n
2
) n even

su(n+1
2
; n�1

2
) n odd

sp(p; q) sl2q+1(C ) su(q + 1; q) p > q

sp(q; q) sl2q(C ) su(q; q)

E6(�14) sl5(C ) su(3; 2)

E6(�26) sl3(C ) � sl3(C ) sl3(C )

E7(�5) E6 E6(2)

E7(�25) sl6(C ) su(3; 3)

E8(�24) E6 E6(2)

F4(�20) sl3(C ) su(2; 1)

References

[B-C1] P. Bala and R. Carter, Classes of unipotent elements in simple algebraic groups. I, Math.

Proc. Cambridge. Philos. Soc. 79 (1976), 401-425. MR 54:5363a

[B-C2] P. Bala and R. Carter, Classes of unipotent elements in simple algebraic groups. II, Math.

Proc. Cambridge. Philos. Soc. 80 (1976), 1-17. MR 54:5363b

[Bo] A. Borel and J. Tits, Groupes r�eductifs, Inst. Hautes Etudes Sci. Publ. Math. 27 (1965),

55-150. MR 34:7527

[B-Cu] N. Burgoyne and R. Cushman, Conjugacy classes in the linear groups, J. Alg. 44 (1977),

339-362. MR 55:5761

[Br] W. C. Brown, A second course in linear algebra, John Wiley & Sons, Interscience, 1988.

MR 89f:15001

[Ca] R. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, John

Wiley & Sons, London, 1985. MR 94k:20020

[C-Mc] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras,

Van Nostrand Reihnhold Mathematics Series, New York, 1993. MR 94j:17001

[D1] D. Djokovi�c, Classi�cation of nilpotent elements in simple exceptional real Lie algebras

of inner type and description of their centralizers, J. Alg. 112 (1988), 503-524. MR

89b:17010

[D2] D. Djokovi�c, Classi�cation of nilpotent elements in the simple real Lie algebras E6(6) and

E6(�26) and description of their centralizers, J. Alg. 116 (1988), 196-207. MR 89k:17022

[D3] D. Djokovi�c, Closures of conjugacy classes in classical real linear Lie groups, Algebra,

Carbondale, Lecture Notes in Math. 848, Springer-Verlag, New York (1980), 63-83. MR

82h:20052

[Dy] E. Dynkin, Semisimple subalgebras of simple Lie algebras, Amer. Soc. Transl. Ser. 2 6,

(1957), 111-245.

[He] S. Helgason, Di�erential geometry, Lie groups, and symmetric spaces, Academic Press,

New York, 1978. MR 80k:53081



32 ALFRED G. NO�EL

[H1] J. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in

Mathematics, vol. 9, Springer-Verlag, New York, 1972. MR 81b:17007

[H2] J. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys

and Monographs, vol. 43, Amer. Math. Soc., Providence RI, 1995. MR 97i:20057

[Hu] T. W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag,

New York, 1974. MR 82a:00006

[J-R] D. S. Johnston and R. W. Richardson, Conjugacy classes in parabolic subgroups of

semisimple algebraic groups. II, Bull. London Math. Soc. 9 (1977), 245-250. MR 58:917

[Ka] N. Kawanaka, Orbits and stabilizers of nilpotent elements of a graded semisimple Lie

algebra, J. Fac. Univ. Tokyo Sect. IA, Math 34 (1987), 573-597. MR 89j:17012

[Ki] D. R. King, The component groups of nilpotents in exceptional simple real Lie algebras,

Comm. Algebra 20 (1) (1992), 219-284. MR 93c:17018

[Kn] A. W. Knapp, Lie groups beyond an introduction, vol. 140, Birkh�auser, Progress in Math-

ematics, Boston, 1996. CMP 96:15

[K-V] A. W. Knapp and D. A. Vogan, Cohomological induction and unitary representations,

vol. 45, Princeton, New Jersey, 1995. MR 96c:22023

[Ko] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex

simple Lie group, Amer. J. Math. 81 (1959), 973-1032. MR 22:5693

[K-R] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces,

Amer. J. Math. 93 (1971), 753-809. MR 47:399

[No1] A. G. No�el, Classi�cation of nilpotent orbits in symmetric spaces, Proceedings of the DI-

MACS workshop for African-American Researchers in the Mathematical Sciences, Amer.

Math. Soc. 34 (1997).

[No2] A. G. No�el, Nilpotent orbits and �-stable parabolic subalgebras, Ph.D. Thesis, Northeastern

University, Boston (March 1997).

[R] R. W. Richardson, Conjugacy classes in Lie algebras and algebraic groups, Ann. Math.

86 (1967), 1-15. MR 36:173

[R1] R. W. Richardson, On orbits of algebraic groups and Lie groups, Bull. Austral. Math.

Soc. 25 (1982), 1-28. MR 83i:14041

[R2] R. W. Richardson, Finiteness theorems for orbits of algebraic groups, Indag. Math. 47

(1985), 337-344. MR 87e:14044

[R�oh] G. R�ohrle, On certain stabilizers in algebraic groups, Comm. Algebra 21 (5) (1993),

1631-1644. MR 94d:20052

[Rot] L. P. Rothschild, Orbits in a real reductive Lie algebra, Trans. Amer. Math. Soc. 168

(June 1972), 403-421. MR 50:2271

[S-K] M. Sato and T. Kimura, A classi�cation of irreducible prehomogeneous vector spaces and

their relative invariants, Nagoya Math. J. 65 (1977), 1-155. MR 55:3341

[Se] J. Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan

39, No. 1 (1987), 127-138. MR 88g:53053

[S-S] T. A. Springer and R. Steinberg, Seminar on algebraic groups and related �nite groups,

Lecture Notes in Mathematics 131 (1970). MR 42:3091

[Ve] M. Vergne, Instantons et correspondence de Kostant-Sekiguchi, R. Acad. Sci. Paris S�er. I

Math. 320 (1995), 901{906. MR 96c:22026

[Vi] E. B. Vinberg, On the classi�cation of the nilpotent elements of graded Lie algebras,

Soviet Math. Dokl. 16 (1975), 1517-1520.

[Vo] D. A. Vogan, Representation of real reductive Lie groups, vol. 15, Birkh�auser, Progress

in Mathematics, Boston, 1981. MR 83c:22022

Departmentof Mathematics, Northeastern University, Boston, Massachusetts, 02115

E-mail address : anoel@lynx.neu.edu

Peritus Software Services Inc. 304 Concord Road, Billerica, Massachusetts 01821

E-mail address : anoel@peritus.com


