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e There is a lot of symmetry in Nature.

e Mathematicians and scientists often used GROUP
THEORY to study symmetry that is expressed by
group transformations preserving some structure.

e Felix Klein ( Das Erlanger Programm, 1872)

e Sophus Lie und Friedrich Engel
( Theorie derTransformationsgruppen, 1888-1893)

o WHAT IS A GROUP?

e A group & is a set with an operation like Addition
or Multiplication in the set of all real numbers.

Example

The set of permutations of 3 objects. Here the
operation is the process that takes you from one per-
mutation to another.

Ss3 = {{a,b,c},{a,c, b}, {b,a,c},{b,c,a},{c,a,b},{c,b,a}}



GROUP REPRESENTATION

A representation of a group is a process that asso-
ciates a matrix to each element of the group.

100 100
{a,b,c} - [0 1 0| {a,c,b} — [0 0 1
001 010
010 010
{bja,c} - |1 00| {bc,a} — [0 01
001 100
001 001
{c,a,b} — |1 00| {¢,b,a} — |0 10
010 100

These matrices form a group & under matrix Mul-
tiplication and we may think of & acting on three
dimensional vectors by permuting their components.
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APPLICATION: PARITY IN QUANTUM MECHANICS
& = {id, r} is defined by

X |id| r
d wd ]| 7
r | rlid

& has exactly two irreducible representations
e 'Trivial representation: id — 1, r — 1

e Parity representation: id — 1, r — —1

Any other representation of & must be a combination of these.

From nonrelativistic quantum mechanics in one di-
mension, a particle in a potential symmetric about
x = 0 has energy eigenfunctions that are either sym-
metric if x is replaced by —z (Trivial Representation)
or antisymmetric corresponding (Parity Representa-
tion).

In general we can always choose the energy
eigenstates to transform like irreducible rep-
resentations of the group. See Howard Georgi’s
book Lie Algebras in Particle Physics



THE FUNDAMENTAL PROBLEM

Given a group § find all the different rep-
resentations of §

The problem is basically solved for :
o5 finite

& Reductive complex Lie groups: The set of all
n X n invertible complex matrices for example.

If § is a real reductive Lie group for example the set
of orthogonal matrices with real entries then we do
not have a complete solution yet. THIS IS MY
AREA OF RESEARCH.
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THE ORBIT OF A POINT UNDER A GROUP ACTION

Let SO3 be the real group of rotations in the 3-
dimensional space. If we fix a system of coordinates
then the group rotates each point P in all possible

ways. if P isnot the origin the resulting orbit of P is
a sphere. Such orbits are called HOMOGENEOUS
SPACES. See figure:
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GEOMETRY OF NILPOTENT ORBITS OF MATRICES

A non zero matrix A is nilpotent if A*¥ = 0 for some positive integer k.

OO0 wn e

Let g be the set of real matrices of the form (y f , y_tvz)

Description of 91 the set of nilpotent matrices of g

2%
i y+Z L 2 2 _2\k 10
Observe that (y—z —x) = (" 4y —27)" * (O 1)

Hence 91 is the set of points (z,y, 2) such that
2’ + y?> — 2> = 0. In other words 91 is a double
sheeted-cone. See figure:
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DESCRIPTION OF NILPOTENT ORBITS OF g

c d
with ad — bc = 1. Then & acts on g by conjugation
Gg® ! And & admits exactly 3 nilpotent orbits
on g. It is a fact that for a real reductive
Lie group the number of nilpotent orbits
under conjugation is finite.

Let & be the group of matrices of the form (a b)

01
Class I: <0 O) —

00
Class II: (O O) —

00
Class III: (1 O) —
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THE “ORBIT METHOD” PHILOSOPHY

Originally proposed by Alexander Kirillov in the 1960’s.
But comes from Physics.

Pursued by Kostant and Auslander (1970’s) Duflo in
1980’s, Vogan and his school in 1990’s.

We want to find all the representions of &

In many cases the method points us to new representations

Quantization
Physics Representation Theory
( Phase Space ) ( Symplectic Homogeneous Space )
ClassicalHSystem Admissible Nilpot!nt Orbit
U Y

QM System ( Hilbert Space )  Irreducible Unitary Representation of &

(Unitary Operators) (Unitary Operators)
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CLASSIFICATION OF ADMISSIBLE NILPOTENT ORBITS

Classical Reductive Real Lie Groups
e J. Schwartz (1987)
e T. Ohta (1991)

Exceptional Reductive Real Lie Groups
e A. Neel (2002)

FIN DE LI’ EPISODE

A SUIVRE



