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Liouville and Weinstein manifolds
Anosov Liouville manifolds

Fukaya category of Anosov Liouville manifolds

Liouville manifolds

I A symplectic manifold (X ,w) is Liouville if it has a complete
symplectically expanding vector field v , i.e. Lvω = ω, that is
convex at infinity

I v is called the Liouville vector field and λ = ivω is the Liouville
1-form, which satisfies dλ = ω

I The skeleton of a Liouville manifold cX ⊂ X is the set of points
that do not escape to infinity under the Liouville flow; the skeleton
can be very singular but think v as tangent to cX

I X deformation retracts to its skeleton cX
I X has a contact structure at infinity ∂∞X given by ker(λ|∂∞X )
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Weinstein manifolds

I A Liouville manifold (X , ω = dλ, v) is Weinstein if v is
gradient-like for a Morse function φ : X → R

I Weinstein manifolds are symplectic handlebodies, one handle
Hk = T ∗Dk × T ∗Dn−k for each Morse critical point of index k

I Core of Hk is isotropic disks Dk ; co-cores is co-isotropic disk
D2n−k ; skeleton is union of cores = singular Lagrangian
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Weinstein manifolds, continued

I Example: T ∗M is Weinstein if M is a smooth manifold equipped
with a Morse function f ; then M ⊂ T ∗M is skeleton and Liouville
vector field is ∇f

I Dimension of cores = index k of critical point; since cores are
isotropic, index k ≤ n := 1

2 dimX and X 2n is homotopy equivalent
to half-dimensional CW complex

I For maximal index n handles, cocores are Lagrangian disks with
Legendrian boundary

I Cocores transversely intersect skeleton at critical points of f =
fixed points of Liouville vector field ∇f on skeleton
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Wrapped Fukaya category of Weinstein manifolds

I Wrapped Fukaya category W(X )

objects are (twisted complexes of) embedded exact Lagrangians
L ⊂ X , closed or with Legendrian boundary ∂L ⊂ ∂X .
morphisms are wrapped Floer cochains CW ∗(L,K )

Theorem (Chantraine-Dimitroglou Rizell-Golovko-Ghiggini,
Ganatra-Pardon-Shende)

If X 2n is Weinstein, the index n co-cores C1, · · · ,Ck generate W(X ).

I Generate: any Lagrangian is isomorphic to a iterated cone of
co-cores of index n handles, i.e. W(X ) = Tw (C1, · · · ,Ck)

I Proof idea:
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Anosov flows

I φt : M3 → M3 is Anosov flow of a vector field X if there is a
splitting

TM ∼=< X > ⊕E s ⊕ Eu

that is invariant under dφt and dφt is exponentially contracting on
E s and expanding on Eu.

Namely, for some Riemannian metric,
there are constants C , µ > 0 so that

‖dφt(v)‖ ≤ Ce−µt‖v‖ for all v ∈ E s

and similarly for Eu

I Example 1: geodesic flow on unit cotangent bundle ST ∗Σ2
g of a

surface Σ2
g , g ≥ 2, with a negative curvature metric

I Example 2: suspension [0, 1]× Σ/(x , 1) ∼ (φ(x), 0) of Anosov
diffeomorphism φ : Σ2 → Σ2, for example Arnold cat map
φ : T 2 → T 2 given by a 2× 2 matrix with integer coefficients and
irrational eigenvalues λ1 < 1 and λ2 = λ−11 > 1.
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Anosov flows, continued

I Weak stable subbundle Ews :=< X > ⊕E s and weak unstable
subbundle Ewu :=< X > ⊕Eu

I Exist 1-forms αs , αu so that ker(αs) = Ews , ker(αu) = Ewu and

LXαs = rsαs and LXαu = ruαu

for functions rs : M → R<0 and ru : M → R>0

I These subbundles are integrable, and integrate to weak
stable/weak unstable foliations Fws ,Fwu.

I Fws ,Fwu are taut foliations, so by Novikov’s theorem, any
tranverse loop is non-contractible
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Bicontact structures from Anosov flows

I α+ := αu + αs and α− := αu − αs define two contact structures
ξ+ := kerα+ and ξ− := kerα− on M

I ξ+ and ξ− intersect transversely along X , i.e. form a bicontact
structure on M.

ξξ ---
E

s
E

u

I ξ+, ξ− are hypertight contact structure: Reeb vector fields R+,R−
of ξ+, ξ− respectively are positively transverse to Fwu, so any Reeb
orbit is non-contractible by tautness of Fwu
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Liouville manifolds from Anosov flows

I Theorem (Mitsumatsu 1995) M × Rs with 1-form

λ := esα+ + e−sα−

is a Liouville manifold, called Anosov Liouville manifold

I Contact structures at ±∞ are ξ+, ξ−

I Liouville vector field on M × Rs is tangent to M × 0 and agrees
with Anosov vector field X , and otherward pointing away from
M × 0; hence skeleton is smooth submanifold M × 0 ⊂ M × R.

I M × Rs is Liouville but not Weinstein: H3(M × R) 6= 0, while
4-dimensional Weinstein manifolds have singular cohomology in
degrees at most 2, the half-dimension
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Lagrangians in Anosov Liouville manifolds

I Example 1: Leaves of weak unstable foliation
Fwu ⊂ M × 0 ⊂ M × R are Lagrangians (either disks or cylinders);
the skeleton M × 0 ⊂ M × R is not finite union of Lagrangians
disks, but foliated by Lagrangrians

I Example 2: Lagrangian cylinders if γ ⊂ M is a closed orbit of
the Anosov flow X , then γ is contained in both
kerαu =< X > ⊕Eu, kerαs =< X > ⊕E s and hence in both
ξ+ = kerα+, ξ− = kerα−. So cylinder

Lγ := γ × R ⊂ M × R

is a strictly exact Lagrangian, i.e. λ|Lγ = 0, and intersects skeleton
in Liouville orbit

I Analogous to Weinstein case, where fixed points of Liouville flow
on skeleton gave rise to Lagrangian co-cores, which generate:
Question: Do Lagrangian cylinders Lγ generate W(M × R)?
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Examples

I Example 1
I If M is unit cotangent bundle ST ∗Σ with Anosov flow = geodesic

flow, then ξ+, ξ− are prequantization contact structure and standard
contact structure with filling T ∗Σ; studied by McDuff 1991, first
example of Liouville but not Weinstein manifold

I Lγ are cylinders over positive conormals of oriented geodesics in Σ

I Example 2
I If M is torus bundle T 2 → M → S1, then Anosov orbits correspond

to finite orbits of Anosov diffeomorphism ψ : T 2 → T 2

I Also, McDuff examples have closed exact tori for each closed
embedded geodesic in Σ (at most 3g − 3 such geodesics). Torus
bundles have no orientable closed exact Lagrangians.
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I Question: do Lagrangian cylinders Lγ generate W(M × R)?
I Let Wcyl(M × R) be subcategory of these Lagrangian cylinders

I Theorem (L.-Cieliebak-Moreno-Massoni) Abouzaid’s
split-generation criterion does not hold for the subcategory, i.e.

open-closed OC : HH∗(Wcyl)→ SH∗+2(M × R)

does not hit the unit (which is true in Weinstein case and would
imply split-generation by finitely many objects)

I Theorem (L.-Cieliebak-Moreno-Massoni): Wcyl(M × R) is not
split-generated by finitely many objects.

I Still possible that the infinitely many objects of Wcyl

split-generates W(M × R), i.e. Wπ
cyl(M × R) ∼= W π(M × R).

I Lagrangians that are strictly exact near the skeleton
M × 0 ⊂ M × R are generated by Lγ , i.e.
Wcyl(M × R) ∼=Wstrict(M × R), by Viterbo restriction functor.
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Proof of OC Map Theorem

I Hochschild homology HH∗(Wcyl(M × R)) is generated by words of
Reeb chords between Lγ and L′γ or intersection points of Lγ

I Open closed map OC : HH∗(W(M ×R))→ SH∗+2(M ×R) counts
J-holomorphic disks with input a word of Reeb chords or
intersection points between Lγ and output a single Reeb orbit

I Key: There is splitting HH∗(Wcyl) ∼= HHc
∗ (Wcyl)⊕ HHnc

∗ (Wcyl)
where HHc

∗ (Wcyl) are words of intersections points and
HHnc
∗ (Wcyl) are words with at least one chord, and OC splitting

HHnc
∗ (Wcyl)→ SH∗+2

nc (M × R) (1)

HHc
∗ (Wcyl)→ SH∗+2

c (M × R) (2)

I The unit of SH∗ is contained in SH0
c

I On other hand, HHc
∗ (Wcyl) ∼= ⊕γHH∗(C ∗(S1 × R)) is supported in

degree 0, 1 by explicit computation; so the image of HHc
∗ is in

degrees 2, 3 and cannot contain the unit.
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Topological disk lemma

I To prove splittings, need to show that any J-holomorphic disk with
inputs at least one chord, has output given by a chord

I Suppose there is a disk in M × R whose boundary maps
alternatively to Lγ and input Reeb chords; its projection to M has
boundary tangent to X or Reeb chords.

a1

a2

a3

an

b

b1
b

b3

2

n

X

X

X

X

F ws

F ws

F ws

u eu

es X
F

ws
γ
γ'

I Topological disk lemma: such a disk cannot exist.
I Reeb chords positively transverse to Fws ; also X is tangent to Fws

but can be perturbed to be positively transverse to Fws , which
contradicts the tautness of Fws .
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Proof of non-finite split-generation

I Suppose that A ⊂ Wcyl is finite collection of Lagrangian cylinders
that split-generates Wcyl .

I There are splittings HH∗(A) ∼= HHc
∗ (A)⊕ HHnc

∗ (A) and

HHc
∗ (A)→ HHc

∗ (Wcyl) (3)

HHnc
∗ (A)→ HHnc

∗ (Wcyl) (4)

I On the other hand,

HHc
∗ (Wcyl) ∼= HHc

∗ (A)⊕
(
⊕γ 6∈AHH∗(C ∗(S1))

)
I Since HH∗(C

∗(S1)) is non-zero, the map HH∗(A)→ HH∗(Wcyl)
cannot be isomorphism, and hence A cannot split-generated Wcyl
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Thanks you!

Thank you!
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