Floer invariants of Anosov flows on 3-manifolds

Oleg Lazarev

Joint with Kai Cieliebak, Agustin Moreno, Thomas Massoni

Montreal Symplectic seminar December 9, 2022

臣

Oleg Lazarev Joint with Kai Cieliebak, Agustin Moreno, Thom Floer invariants of Anosov flows on 3-manifolds

Liouville manifolds

- A symplectic manifold (X, w) is Liouville if it has a complete symplectically expanding vector field v, i.e. L_vω = ω, that is convex at infinity
- v is called the Liouville vector field and λ = i_vω is the Liouville 1-form, which satisfies dλ = ω

A D A A R A A R A A R A

E

Liouville manifolds

- A symplectic manifold (X, w) is Liouville if it has a complete symplectically expanding vector field v, i.e. L_vω = ω, that is convex at infinity
- v is called the Liouville vector field and λ = i_vω is the Liouville 1-form, which satisfies dλ = ω
- The skeleton of a Liouville manifold c_X ⊂ X is the set of points that do not escape to infinity under the Liouville flow; the skeleton can be very singular but think v as tangent to c_X

A D A A R A A R A A R A

E

• X deformation retracts to its skeleton c_X

Liouville manifolds

- A symplectic manifold (X, w) is Liouville if it has a complete symplectically expanding vector field v, i.e. L_vω = ω, that is convex at infinity
- v is called the Liouville vector field and λ = i_vω is the Liouville 1-form, which satisfies dλ = ω
- The skeleton of a Liouville manifold c_X ⊂ X is the set of points that do not escape to infinity under the Liouville flow; the skeleton can be very singular but think v as tangent to c_X
- X deformation retracts to its skeleton c_X
- ► X has a contact structure at infinity $\partial_{\infty} X$ given by ker $(\lambda|_{\partial_{\infty} X})$

A D A A R A A R A A R A

E

Weinstein manifolds

A Liouville manifold (X, ω = dλ, v) is Weinstein if v is gradient-like for a Morse function φ : X → ℝ

イロン イボン イヨン イヨン

3

Weinstein manifolds

- A Liouville manifold (X, ω = dλ, v) is Weinstein if v is gradient-like for a Morse function φ : X → ℝ
- Weinstein manifolds are symplectic handlebodies, one handle H^k = T*D^k × T*D^{n-k} for each Morse critical point of index k

ヘロト 不得 トイヨト イヨト

E

Weinstein manifolds

- A Liouville manifold (X, ω = dλ, v) is Weinstein if v is gradient-like for a Morse function φ : X → ℝ
- Weinstein manifolds are symplectic handlebodies, one handle H^k = T*D^k × T*D^{n-k} for each Morse critical point of index k
- Core of H^k is isotropic disks D^k; co-cores is co-isotropic disk D^{2n-k}; skeleton is union of cores = singular Lagrangian

Lagrangian skeleton

cocore disk C^{2n-k}

Weinstein manifolds, continued

Example: T*M is Weinstein if M is a smooth manifold equipped with a Morse function f; then M ⊂ T*M is skeleton and Liouville vector field is ∇f

イロト イポト イヨト イヨト

E

Weinstein manifolds, continued

- **Example:** T^*M is Weinstein if M is a smooth manifold equipped with a Morse function f; then $M \subset T^*M$ is skeleton and Liouville vector field is ∇f
- Dimension of cores = index k of critical point; since cores are isotropic, index k ≤ n := ½ dim X and X²ⁿ is homotopy equivalent to half-dimensional CW complex

Weinstein manifolds, continued

- **Example:** T^*M is Weinstein if M is a smooth manifold equipped with a Morse function f; then $M \subset T^*M$ is skeleton and Liouville vector field is ∇f
- Dimension of cores = index k of critical point; since cores are isotropic, index k ≤ n := ½ dim X and X²ⁿ is homotopy equivalent to half-dimensional CW complex
- For maximal index n handles, cocores are Lagrangian disks with Legendrian boundary
- Cocores transversely intersect skeleton at critical points of f = fixed points of Liouville vector field ∇f on skeleton

(D) (A) (A) (A) (A) (A)

Wrapped Fukaya category of Weinstein manifolds

• Wrapped Fukaya category W(X)

objects are (twisted complexes of) embedded exact Lagrangians $L \subset X$, closed or with Legendrian boundary $\partial L \subset \partial X$. **morphisms** are wrapped Floer cochains $CW^*(L, K)$

Wrapped Fukaya category of Weinstein manifolds

• Wrapped Fukaya category $\mathcal{W}(X)$

objects are (twisted complexes of) embedded exact Lagrangians $L \subset X$, closed or with Legendrian boundary $\partial L \subset \partial X$. **morphisms** are wrapped Floer cochains $CW^*(L, K)$

(D) (A) (A) (A) (A) (A)

Theorem (Chantraine-Dimitroglou Rizell-Golovko-Ghiggini, Ganatra-Pardon-Shende)

If X^{2n} is Weinstein, the index n co-cores C_1, \dots, C_k generate $\mathcal{W}(X)$.

▶ Generate: any Lagrangian is isomorphic to a iterated cone of co-cores of index *n* handles, i.e. W(X) = Tw (C₁, · · · , C_k)

Wrapped Fukaya category of Weinstein manifolds

• Wrapped Fukaya category $\mathcal{W}(X)$

objects are (twisted complexes of) embedded exact Lagrangians $L \subset X$, closed or with Legendrian boundary $\partial L \subset \partial X$. **morphisms** are wrapped Floer cochains $CW^*(L, K)$

Theorem (Chantraine-Dimitroglou Rizell-Golovko-Ghiggini, Ganatra-Pardon-Shende)

If X^{2n} is Weinstein, the index n co-cores C_1, \dots, C_k generate $\mathcal{W}(X)$.

▶ Generate: any Lagrangian is isomorphic to a iterated cone of co-cores of index *n* handles, i.e. W(X) = Tw (C₁, · · · , C_k)

Liouville and Weinstein manifolds

Anosov Liouville manifolds Fukaya category of Anosov Liouville manifolds

(ロ) (部) (注) (注) (注)

Anosov flows

▶ $\phi_t : M^3 \to M^3$ is Anosov flow of a vector field X if there is a splitting

$$TM \cong < X > \oplus E^s \oplus E^u$$

that is invariant under $d\phi_t$ and $d\phi_t$ is exponentially contracting on E^s and expanding on E^u .

3

Anosov flows

▶ $\phi_t : M^3 \to M^3$ is Anosov flow of a vector field X if there is a splitting

$$TM \cong < X > \oplus E^s \oplus E^u$$

that is invariant under $d\phi_t$ and $d\phi_t$ is exponentially contracting on E^s and expanding on E^u . Namely, for some Riemannian metric, there are constants $C, \mu > 0$ so that

$$\|d\phi_t(v)\| \leq Ce^{-\mu t}\|v\|$$
 for all $v \in E^s$

A D A A R A A R A A R A

E

and similarly for E^u

Anosov flows

▶ $\phi_t : M^3 \to M^3$ is Anosov flow of a vector field X if there is a splitting

$$TM \cong < X > \oplus E^s \oplus E^u$$

that is invariant under $d\phi_t$ and $d\phi_t$ is exponentially contracting on E^s and expanding on E^u . Namely, for some Riemannian metric, there are constants $C, \mu > 0$ so that

$$\|d\phi_t(v)\| \leq Ce^{-\mu t}\|v\|$$
 for all $v \in E^s$

E

and similarly for E^u

Example 1: geodesic flow on unit cotangent bundle ST*Σ²_g of a surface Σ²_g, g ≥ 2, with a negative curvature metric

Anosov flows

• $\phi_t: M^3 \to M^3$ is Anosov flow of a vector field X if there is a splitting

$$TM \cong < X > \oplus E^s \oplus E^u$$

that is invariant under $d\phi_t$ and $d\phi_t$ is exponentially contracting on E^s and expanding on E^u . Namely, for some Riemannian metric, there are constants $C, \mu > 0$ so that

$$\|d\phi_t(v)\| \leq Ce^{-\mu t}\|v\|$$
 for all $v \in E^s$

E

and similarly for E^u

- Example 1: geodesic flow on unit cotangent bundle ST^{*}Σ²_g of a surface Σ²_g, g ≥ 2, with a negative curvature metric
- ► **Example 2:** suspension $[0,1] \times \Sigma/(x,1) \sim (\phi(x),0)$ of Anosov diffeomorphism $\phi : \Sigma^2 \to \Sigma^2$,

Anosov flows

• $\phi_t: M^3 \to M^3$ is Anosov flow of a vector field X if there is a splitting

$$TM \cong < X > \oplus E^s \oplus E^u$$

that is invariant under $d\phi_t$ and $d\phi_t$ is exponentially contracting on E^s and expanding on E^u . Namely, for some Riemannian metric, there are constants $C, \mu > 0$ so that

$$\|d\phi_t(v)\| \leq Ce^{-\mu t}\|v\|$$
 for all $v \in E^s$

and similarly for E^u

- Example 1: geodesic flow on unit cotangent bundle ST*Σ²_g of a surface Σ²_g, g ≥ 2, with a negative curvature metric
- Example 2: suspension [0,1] × Σ/(x,1) ~ (φ(x),0) of Anosov diffeomorphism φ : Σ² → Σ², for example Arnold cat map φ : T² → T² given by a 2 × 2 matrix with integer coefficients and irrational eigenvalues λ₁ < 1 and λ₂ = λ₁⁻¹ > 1.

Anosov flows, continued

Weak stable subbundle E^{ws} :=< X > ⊕E^s and weak unstable subbundle E^{wu} :=< X > ⊕E^u

イロン イボン イヨン イヨン 三日

Anosov flows, continued

- Weak stable subbundle E^{ws} :=< X > ⊕E^s and weak unstable subbundle E^{wu} :=< X > ⊕E^u
- Exist 1-forms α_s, α_u so that $\ker(\alpha_s) = E^{ws}, \ker(\alpha_u) = E^{wu}$ and

$$L_X \alpha_s = r_s \alpha_s$$
 and $L_X \alpha_u = r_u \alpha_u$

E

for functions $r_s: M \to \mathbb{R}_{<0}$ and $r_u: M \to \mathbb{R}_{>0}$

Anosov flows, continued

- Weak stable subbundle E^{ws} :=< X > ⊕E^s and weak unstable subbundle E^{wu} :=< X > ⊕E^u
- Exist 1-forms α_s, α_u so that $\ker(\alpha_s) = E^{ws}, \ker(\alpha_u) = E^{wu}$ and

$$L_X \alpha_s = r_s \alpha_s$$
 and $L_X \alpha_u = r_u \alpha_u$

イロト イポト イヨト イヨト

E

for functions $r_s: M \to \mathbb{R}_{<0}$ and $r_u: M \to \mathbb{R}_{>0}$

These subbundles are integrable, and integrate to weak stable/weak unstable foliations F^{ws}, F^{wu}.

Anosov flows, continued

- Weak stable subbundle E^{ws} :=< X > ⊕E^s and weak unstable subbundle E^{wu} :=< X > ⊕E^u
- Exist 1-forms α_s, α_u so that $\ker(\alpha_s) = E^{ws}, \ker(\alpha_u) = E^{wu}$ and

$$L_X \alpha_s = r_s \alpha_s$$
 and $L_X \alpha_u = r_u \alpha_u$

E

for functions $r_s: M \to \mathbb{R}_{<0}$ and $r_u: M \to \mathbb{R}_{>0}$

- These subbundles are integrable, and integrate to weak stable/weak unstable foliations F^{ws}, F^{wu}.
- ► *F^{ws}*, *F^{wu}* are *taut* foliations, so by Novikov's theorem, any tranverse loop is *non-contractible*

Bicontact structures from Anosov flows

• $\alpha_+ := \alpha_u + \alpha_s$ and $\alpha_- := \alpha_u - \alpha_s$ define two contact structures $\xi_+ := \ker \alpha_+$ and $\xi_- := \ker \alpha_-$ on M

イロト 不得 とうほう うほう

3

Bicontact structures from Anosov flows

- $\alpha_+ := \alpha_u + \alpha_s$ and $\alpha_- := \alpha_u \alpha_s$ define two contact structures $\xi_+ := \ker \alpha_+$ and $\xi_- := \ker \alpha_-$ on M
- ξ₊ and ξ_− intersect transversely along X, i.e. form a bicontact structure on M.

(D) (A) (A) (A) (A)

3

Bicontact structures from Anosov flows

• $\alpha_+ := \alpha_u + \alpha_s$ and $\alpha_- := \alpha_u - \alpha_s$ define two contact structures $\xi_+ := \ker \alpha_+$ and $\xi_- := \ker \alpha_-$ on M

ξ₊ and ξ₋ intersect transversely along X, i.e. form a bicontact structure on M.

(D) (A) (A) (A) (A)

臣

Bicontact structures from Anosov flows

• $\alpha_+ := \alpha_u + \alpha_s$ and $\alpha_- := \alpha_u - \alpha_s$ define two contact structures $\xi_+ := \ker \alpha_+$ and $\xi_- := \ker \alpha_-$ on M

▶ ξ_+ and ξ_- intersect transversely along *X*, i.e. form a bicontact structure on *M*.

ξ₊, ξ_− are hypertight contact structure: Reeb vector fields R₊, R_− of ξ₊, ξ_− respectively are positively transverse to F^{wu}, so any Reeb orbit is non-contractible by tautness of F^{wu}

Liouville manifolds from Anosov flows

Theorem (Mitsumatsu 1995) $M \times \mathbb{R}_s$ with 1-form

$$\lambda := e^{s} \alpha_{+} + e^{-s} \alpha_{-}$$

-

is a Liouville manifold, called Anosov Liouville manifold

• Contact structures at $\pm \infty$ are ξ_+, ξ_-

Liouville manifolds from Anosov flows

Theorem (Mitsumatsu 1995) $M \times \mathbb{R}_s$ with 1-form

$$\lambda := e^{s} \alpha_{+} + e^{-s} \alpha_{-}$$

is a Liouville manifold, called Anosov Liouville manifold

- Contact structures at $\pm \infty$ are ξ_+, ξ_-
- Liouville vector field on M × ℝ_s is tangent to M × 0 and agrees with Anosov vector field X, and otherward pointing away from M × 0; hence skeleton is smooth submanifold M × 0 ⊂ M × ℝ.

イロト イポト イヨト イヨト

Liouville manifolds from Anosov flows

Theorem (Mitsumatsu 1995) $M \times \mathbb{R}_s$ with 1-form

$$\lambda := \mathbf{e}^{\mathbf{s}} \alpha_+ + \mathbf{e}^{-\mathbf{s}} \alpha_-$$

is a Liouville manifold, called Anosov Liouville manifold

• Contact structures at
$$\pm\infty$$
 are ξ_+,ξ_-

- Liouville vector field on M × ℝ_s is tangent to M × 0 and agrees with Anosov vector field X, and otherward pointing away from M × 0; hence skeleton is smooth submanifold M × 0 ⊂ M × ℝ.
- M × ℝ_s is Liouville but not Weinstein: H³(M × ℝ) ≠ 0, while 4-dimensional Weinstein manifolds have singular cohomology in degrees at most 2, the half-dimension

(D) (A) (A) (A) (A) (A)

Lagrangians in Anosov Liouville manifolds

Example 1: Leaves of weak unstable foliation
F^{wu} ⊂ M × 0 ⊂ M × ℝ are Lagrangians (either disks or cylinders);
the skeleton M × 0 ⊂ M × ℝ is not finite union of Lagrangians
disks, but foliated by Lagrangrians

E

Lagrangians in Anosov Liouville manifolds

- ► Example 1: Leaves of weak unstable foliation F^{wu} ⊂ M × 0 ⊂ M × ℝ are Lagrangians (either disks or cylinders); the skeleton M × 0 ⊂ M × ℝ is not finite union of Lagrangians disks, but foliated by Lagrangrians
- Example 2: Lagrangian cylinders if γ ⊂ M is a closed orbit of the Anosov flow X, then γ is contained in both ker α_u =< X > ⊕E^u, ker α_s =< X > ⊕E^s and hence in both ξ₊ = ker α₊, ξ₋ = ker α₋. So cylinder

$$L_{\gamma} := \gamma \times \mathbb{R} \subset M \times \mathbb{R}$$

is a strictly exact Lagrangian, i.e. $\lambda|_{L\gamma}=$ 0, and intersects skeleton in Liouville orbit

A D A A R A A R A A R A

E

Lagrangians in Anosov Liouville manifolds

- ► Example 1: Leaves of weak unstable foliation F^{wu} ⊂ M × 0 ⊂ M × ℝ are Lagrangians (either disks or cylinders); the skeleton M × 0 ⊂ M × ℝ is not finite union of Lagrangians disks, but foliated by Lagrangrians
- Example 2: Lagrangian cylinders if γ ⊂ M is a closed orbit of the Anosov flow X, then γ is contained in both ker α_u =< X > ⊕E^u, ker α_s =< X > ⊕E^s and hence in both ξ₊ = ker α₊, ξ₋ = ker α₋. So cylinder

$$L_{\gamma} := \gamma \times \mathbb{R} \subset M \times \mathbb{R}$$

is a strictly exact Lagrangian, i.e. $\lambda|_{L_{\gamma}}=$ 0, and intersects skeleton in Liouville orbit

 Analogous to Weinstein case, where fixed points of Liouville flow on skeleton gave rise to Lagrangian co-cores, which generate:
 Question: Do Lagrangian cylinders L_γ generate W(M × R)?

Examples

Example 1

- If *M* is unit cotangent bundle ST*Σ with Anosov flow = geodesic flow, then ξ₊, ξ₋ are prequantization contact structure and standard contact structure with filling T*Σ; studied by McDuff 1991, first example of Liouville but not Weinstein manifold
- L_{γ} are cylinders over positive conormals of oriented geodesics in Σ

(D) (A) (A) (A) (A) (A)

E

Examples

Example 1

- If *M* is unit cotangent bundle ST*Σ with Anosov flow = geodesic flow, then ξ₊, ξ₋ are prequantization contact structure and standard contact structure with filling T*Σ; studied by McDuff 1991, first example of Liouville but not Weinstein manifold
- L_{γ} are cylinders over positive conormals of oriented geodesics in Σ

Example 2

▶ If *M* is torus bundle $T^2 \rightarrow M \rightarrow S^1$, then Anosov orbits correspond to finite orbits of Anosov diffeomorphism $\psi : T^2 \rightarrow T^2$

E

Examples

Example 1

- If *M* is unit cotangent bundle ST*Σ with Anosov flow = geodesic flow, then ξ₊, ξ₋ are prequantization contact structure and standard contact structure with filling T*Σ; studied by McDuff 1991, first example of Liouville but not Weinstein manifold
- L_{γ} are cylinders over positive conormals of oriented geodesics in Σ

Example 2

▶ If *M* is torus bundle $T^2 \rightarrow M \rightarrow S^1$, then Anosov orbits correspond to finite orbits of Anosov diffeomorphism $\psi : T^2 \rightarrow T^2$

(D) (A) (A) (A) (A) (A)

 Also, McDuff examples have closed exact tori for each closed embedded geodesic in Σ (at most 3g - 3 such geodesics). Torus bundles have no orientable closed exact Lagrangians.

(ロ) (部) (注) (注) (注)

Fukaya category of Anosov Liouville manifolds

• Question: do Lagrangian cylinders L_{γ} generate $\mathcal{W}(M \times \mathbb{R})$?

• Let $W_{cyl}(M \times \mathbb{R})$ be subcategory of these Lagrangian cylinders

A D A A R A A R A A R A

臣

Fukaya category of Anosov Liouville manifolds

- Question: do Lagrangian cylinders L_{γ} generate $\mathcal{W}(M \times \mathbb{R})$?
- ▶ Let $\mathcal{W}_{cyl}(M imes \mathbb{R})$ be subcategory of these Lagrangian cylinders
- Theorem (L.-Cieliebak-Moreno-Massoni) Abouzaid's split-generation criterion does not hold for the subcategory, i.e.

open-closed $OC: HH_*(\mathcal{W}_{cyl}) \to SH^{*+2}(M \times \mathbb{R})$

A D A A R A A R A A R A

臣

does not hit the unit

Fukaya category of Anosov Liouville manifolds

- Question: do Lagrangian cylinders L_{γ} generate $\mathcal{W}(M \times \mathbb{R})$?
- ▶ Let $W_{cyl}(M imes \mathbb{R})$ be subcategory of these Lagrangian cylinders
- Theorem (L.-Cieliebak-Moreno-Massoni) Abouzaid's split-generation criterion does not hold for the subcategory, i.e.

open-closed $OC: HH_*(\mathcal{W}_{cyl}) \to SH^{*+2}(M \times \mathbb{R})$

E

does not hit the unit (which is true in Weinstein case and would imply split-generation by finitely many objects)

Fukaya category of Anosov Liouville manifolds

- Question: do Lagrangian cylinders L_{γ} generate $\mathcal{W}(M \times \mathbb{R})$?
- ▶ Let $\mathcal{W}_{cyl}(M imes \mathbb{R})$ be subcategory of these Lagrangian cylinders
- Theorem (L.-Cieliebak-Moreno-Massoni) Abouzaid's split-generation criterion does not hold for the subcategory, i.e.

open-closed $OC: HH_*(\mathcal{W}_{cyl}) \to SH^{*+2}(M \times \mathbb{R})$

does not hit the unit (which is true in Weinstein case and would imply split-generation by finitely many objects)

► Theorem (L.-Cieliebak-Moreno-Massoni): W_{cyl}(M × ℝ) is not split-generated by finitely many objects.

A D A A R A A R A A R A

E

Fukaya category of Anosov Liouville manifolds

- Question: do Lagrangian cylinders L_{γ} generate $\mathcal{W}(M \times \mathbb{R})$?
- ▶ Let $\mathcal{W}_{cyl}(M imes \mathbb{R})$ be subcategory of these Lagrangian cylinders
- Theorem (L.-Cieliebak-Moreno-Massoni) Abouzaid's split-generation criterion does not hold for the subcategory, i.e.

open-closed $OC: HH_*(\mathcal{W}_{cyl}) \to SH^{*+2}(M \times \mathbb{R})$

does not hit the unit (which is true in Weinstein case and would imply split-generation by finitely many objects)

► Theorem (L.-Cieliebak-Moreno-Massoni): W_{cyl}(M × ℝ) is not split-generated by finitely many objects.

A D A A R A A R A A R A

E

Still possible that the infinitely many objects of W_{cyl} split-generates W(M × ℝ), i.e. W^π_{cyl}(M × ℝ) ≅ W^π(M × ℝ).

Fukaya category of Anosov Liouville manifolds

- Question: do Lagrangian cylinders L_{γ} generate $\mathcal{W}(M \times \mathbb{R})$?
- ▶ Let $\mathcal{W}_{cyl}(M imes \mathbb{R})$ be subcategory of these Lagrangian cylinders
- Theorem (L.-Cieliebak-Moreno-Massoni) Abouzaid's split-generation criterion does not hold for the subcategory, i.e.

open-closed $OC: HH_*(\mathcal{W}_{cyl}) \to SH^{*+2}(M \times \mathbb{R})$

does not hit the unit (which is true in Weinstein case and would imply split-generation by finitely many objects)

- ► Theorem (L.-Cieliebak-Moreno-Massoni): W_{cyl}(M × ℝ) is not split-generated by finitely many objects.
- Still possible that the infinitely many objects of W_{cyl} split-generates W(M × ℝ), i.e. W^π_{cyl}(M × ℝ) ≅ W^π(M × ℝ).
- Lagrangians that are strictly exact near the skeleton $M \times 0 \subset M \times \mathbb{R}$ are generated by L_{γ} , i.e. $\mathcal{W}_{cyl}(M \times \mathbb{R}) \cong \mathcal{W}_{strict}(M \times \mathbb{R})$, by Viterbo restriction functor.

æ

Proof of OC Map Theorem

Hochschild homology HH_{*}(W_{cyl}(M × ℝ)) is generated by words of Reeb chords between L_γ and L'_γ or intersection points of L_γ

3

Proof of OC Map Theorem

- Hochschild homology HH_{*}(W_{cyl}(M × ℝ)) is generated by words of Reeb chords between L_γ and L'_γ or intersection points of L_γ
- Open closed map OC : HH_{*}(W(M × ℝ)) → SH^{*+2}(M × ℝ) counts J-holomorphic disks with input a word of Reeb chords or intersection points between L_γ and output a single Reeb orbit

Proof of OC Map Theorem

- Hochschild homology HH_{*}(W_{cyl}(M × ℝ)) is generated by words of Reeb chords between L_γ and L'_γ or intersection points of L_γ
- Open closed map OC : HH_{*}(W(M × ℝ)) → SH^{*+2}(M × ℝ) counts J-holomorphic disks with input a word of Reeb chords or intersection points between L_γ and output a single Reeb orbit
- Key: There is splitting HH_{*}(W_{cyl}) ≅ HH^c_{*}(W_{cyl}) ⊕ HH^{nc}_{*}(W_{cyl}) where HH^c_{*}(W_{cyl}) are words of intersections points and HH^{nc}_{*}(W_{cyl}) are words with at least one chord,

(D) (A) (A) (A)

Proof of OC Map Theorem

- Hochschild homology HH_{*}(W_{cyl}(M × ℝ)) is generated by words of Reeb chords between L_γ and L'_γ or intersection points of L_γ
- Open closed map OC : HH_{*}(W(M × ℝ)) → SH^{*+2}(M × ℝ) counts J-holomorphic disks with input a word of Reeb chords or intersection points between L_γ and output a single Reeb orbit
- ▶ Key: There is splitting $HH_*(\mathcal{W}_{cyl}) \cong HH^c_*(\mathcal{W}_{cyl}) \oplus HH^{nc}_*(\mathcal{W}_{cyl})$ where $HH^c_*(\mathcal{W}_{cyl})$ are words of intersections points and $HH^{nc}_*(\mathcal{W}_{cyl})$ are words with at least one chord, and OC splitting

$$HH^{nc}_{*}(\mathcal{W}_{cyl}) \to SH^{*+2}_{nc}(M \times \mathbb{R})$$
 (1)

$$HH^{c}_{*}(\mathcal{W}_{cyl}) \to SH^{*+2}_{c}(M \times \mathbb{R})$$
 (2)

(D) (A) (A) (A)

Proof of OC Map Theorem

- Hochschild homology HH_{*}(W_{cyl}(M × ℝ)) is generated by words of Reeb chords between L_γ and L'_γ or intersection points of L_γ
- Open closed map OC : HH_{*}(W(M × ℝ)) → SH^{*+2}(M × ℝ) counts J-holomorphic disks with input a word of Reeb chords or intersection points between L_γ and output a single Reeb orbit
- ▶ Key: There is splitting $HH_*(\mathcal{W}_{cyl}) \cong HH^c_*(\mathcal{W}_{cyl}) \oplus HH^{nc}_*(\mathcal{W}_{cyl})$ where $HH^c_*(\mathcal{W}_{cyl})$ are words of intersections points and $HH^{nc}_*(\mathcal{W}_{cyl})$ are words with at least one chord, and OC splitting

$$HH^{nc}_{*}(\mathcal{W}_{cyl}) \to SH^{*+2}_{nc}(M \times \mathbb{R})$$
 (1)

$$HH^{c}_{*}(\mathcal{W}_{cyl}) \to SH^{*+2}_{c}(M \times \mathbb{R})$$
 (2)

- The unit of SH^* is contained in SH_c^0
- On other hand, HH^c_{*}(W_{cyl}) ≅ ⊕_γHH_{*}(C^{*}(S¹ × ℝ)) is supported in degree 0, 1 by explicit computation; so the image of HH^c_{*} is in degrees 2, 3 and cannot contain the unit.

Topological disk lemma

To prove splittings, need to show that any J-holomorphic disk with inputs at least one chord, has output given by a chord

A D A A R A A R A A R A

3

Topological disk lemma

- To prove splittings, need to show that any J-holomorphic disk with inputs at least one chord, has output given by a chord
- Suppose there is a disk in M × ℝ whose boundary maps alternatively to L_γ and input Reeb chords; its projection to M has boundary tangent to X or Reeb chords.

Topological disk lemma

- To prove splittings, need to show that any J-holomorphic disk with inputs at least one chord, has output given by a chord
- Suppose there is a disk in M × ℝ whose boundary maps alternatively to L_γ and input Reeb chords; its projection to M has boundary tangent to X or Reeb chords.

- Topological disk lemma: such a disk cannot exist.
- Reeb chords positively transverse to F^{ws}; also X is tangent to F^{ws} but can be perturbed to be positively transverse to F^{ws}, which contradicts the tautness of F^{ws}.

Oleg Lazarev Joint with Kai Cieliebak, Agustin Moreno, Thom Floer invariants of Anosov flows on 3-manifolds

Proof of non-finite split-generation

Suppose that A ⊂ W_{cyl} is finite collection of Lagrangian cylinders that split-generates W_{cyl}.

(4月) (4日) (4日)

臣

Proof of non-finite split-generation

- Suppose that A ⊂ W_{cyl} is finite collection of Lagrangian cylinders that split-generates W_{cyl}.
- ▶ There are splittings $HH_*(A) \cong HH^c_*(A) \oplus HH^{nc}_*(A)$ and

$$HH^{c}_{*}(A) \to HH^{c}_{*}(\mathcal{W}_{cyl})$$
(3)
$$HH^{nc}_{*}(A) \to HH^{nc}_{*}(\mathcal{W}_{cyl})$$
(4)

A D A A R A A R A A R A

E

On the other hand,

 $HH^{c}_{*}(\mathcal{W}_{cyl}) \cong HH^{c}_{*}(A) \oplus \left(\oplus_{\gamma \notin A} HH_{*}(C^{*}(S^{1})) \right)$

Proof of non-finite split-generation

- Suppose that A ⊂ W_{cyl} is finite collection of Lagrangian cylinders that split-generates W_{cyl}.
- ▶ There are splittings $HH_*(A) \cong HH^c_*(A) \oplus HH^{nc}_*(A)$ and

$$\begin{aligned} HH^{c}_{*}(A) &\to HH^{c}_{*}(\mathcal{W}_{cyl}) \\ HH^{nc}_{*}(A) &\to HH^{nc}_{*}(\mathcal{W}_{cyl}) \end{aligned} \tag{3}$$

- 4 周 ト 4 ヨ ト 4 ヨ ト - ヨ

$$HH^{c}_{*}(\mathcal{W}_{cyl}) \cong HH^{c}_{*}(A) \oplus \left(\oplus_{\gamma \notin A} HH_{*}(C^{*}(S^{1})) \right)$$

▶ Since $HH_*(C^*(S^1))$ is non-zero, the map $HH_*(A) \rightarrow HH_*(\mathcal{W}_{cyl})$ cannot be isomorphism, and hence A cannot split-generated \mathcal{W}_{cyl}

Thanks you!

Thank you!

イロン イボン イヨン イヨン

Э

Oleg Lazarev Joint with Kai Cieliebak, Agustin Moreno, Thom Floer invariants of Anosov flows on 3-manifolds

Oleg Lazarev Joint with Kai Cieliebak, Agustin Moreno, Thom Floer invariants of Anosov flows on 3-manifolds

(ロ) (部) (注) (注) (注)