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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Rolling without slipping

I Consider a car in R2 with position x , y and angle θ with the
x-axis; configuration space is {(x , y , θ)} = R2 × S1

I If the car slips, its path (x(t), y(t), θ(t)) can be arbitrary; for
example (t, 0, π/4).
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Rolling without slipping, II

I If car rolls without slipping, then θ determines direction of
motion: dy

dx = tan(θ)

I Finding a non-slipping path (x(t), y(t), θ(t)) is equivalent to
solving differential equation dy

dx = tan(θ)!
I A path (x(t), y(t), θ(t)) is non-slipping if tangent to 2-planes

ξ2 := {vectors v at (x , y , θ) so vy = tan(θ)vx} = ker(dy−tan(θ)dx)

I Question: can any path in R3 be approximated by the
motion of a non-slipping car?
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Formal/genuine functions

I Graph of function z(x) with its derivative:
(x , dz

dx , z(x)) ⊂ R3
x ,p,z

I Decouple derivative from the function and graph ‘formal
functions’ (x , p(x), z(x)) ⊂ R3

I (x , y(x), z(x)) ⊂ R3 is graph of ‘genuine’ function if dz
dx = p,

i.e. tangent to the hyperplane distribution ξ2 := ker(dz −pdx)
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Formal/genuine functions, II

I Genuine functions: curves (x(t), p(t), z(t)) satisfying dz
dx = p.

I Example: replace ODE ( df
dx )2 + f (x)2 df

dx = x5 with algebraic
equation p2 + pz2 = x5; curves in this hypersurface tangent
to ξ are solutions to the ODE

I Question: can any formal function approximated by a
genuine function?
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Contact distribution

Contact distribution ξ and subspaces tangent to ξ are key objects.

Figure: Contact distribution ξstd = ker(dz − ydx) ⊂ TR3, image by P.
Massot.

I Observe that the contact planes ξ are very twisted (maximally
non-integrable). Largest subspace that is tangent to ξ is
1-dimensional!
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Contact geometry

I Definition: a contact structure ξ on a manifold Y 2n+1 is a
2n-plane distribution ξ2n = ker(α) for a 1-form α with
α ∧ (dα)n 6= 0, maximally non-integrable

I Observation: α ∧ (dα)n 6= 0 is a differential inequality, not
easy to find solutions.

I In previous example, α = dz − ydx and dα = dx ∧ dy and
α ∧ dα = (dz − ydx) ∧ (dx ∧ dy) = dz ∧ dx ∧ dy 6= 0.

I Examples: (R2n+1, ξ), 1-jet space J1(M) = T ∗M × R

T ∗M×R = {point x in M, (co)tangent vector p at x, and number}

I The (universal cover of the) previous two examples are
contactomorphic: exists a map φ : (M, ξM)→ (N, ξN) taking
ξM to ξN

Oleg Lazarev UMass Boston Mathematics Department The Haitian Scientific SocietyFlexibility and rigidity in contact and symplectic geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Contact geometry

I Definition: a contact structure ξ on a manifold Y 2n+1 is a
2n-plane distribution ξ2n = ker(α) for a 1-form α with
α ∧ (dα)n 6= 0, maximally non-integrable

I Observation: α ∧ (dα)n 6= 0 is a differential inequality, not
easy to find solutions.

I In previous example, α = dz − ydx and dα = dx ∧ dy and
α ∧ dα = (dz − ydx) ∧ (dx ∧ dy) = dz ∧ dx ∧ dy 6= 0.

I Examples: (R2n+1, ξ), 1-jet space J1(M) = T ∗M × R

T ∗M×R = {point x in M, (co)tangent vector p at x, and number}

I The (universal cover of the) previous two examples are
contactomorphic: exists a map φ : (M, ξM)→ (N, ξN) taking
ξM to ξN

Oleg Lazarev UMass Boston Mathematics Department The Haitian Scientific SocietyFlexibility and rigidity in contact and symplectic geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Contact geometry

I Definition: a contact structure ξ on a manifold Y 2n+1 is a
2n-plane distribution ξ2n = ker(α) for a 1-form α with
α ∧ (dα)n 6= 0, maximally non-integrable

I Observation: α ∧ (dα)n 6= 0 is a differential inequality, not
easy to find solutions.

I In previous example, α = dz − ydx and dα = dx ∧ dy and
α ∧ dα = (dz − ydx) ∧ (dx ∧ dy) = dz ∧ dx ∧ dy 6= 0.

I Examples: (R2n+1, ξ), 1-jet space J1(M) = T ∗M × R

T ∗M×R = {point x in M, (co)tangent vector p at x, and number}

I The (universal cover of the) previous two examples are
contactomorphic: exists a map φ : (M, ξM)→ (N, ξN) taking
ξM to ξN

Oleg Lazarev UMass Boston Mathematics Department The Haitian Scientific SocietyFlexibility and rigidity in contact and symplectic geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Contact geometry

I Definition: a contact structure ξ on a manifold Y 2n+1 is a
2n-plane distribution ξ2n = ker(α) for a 1-form α with
α ∧ (dα)n 6= 0, maximally non-integrable

I Observation: α ∧ (dα)n 6= 0 is a differential inequality, not
easy to find solutions.

I In previous example, α = dz − ydx and dα = dx ∧ dy and
α ∧ dα = (dz − ydx) ∧ (dx ∧ dy) = dz ∧ dx ∧ dy 6= 0.

I Examples: (R2n+1, ξ), 1-jet space J1(M) = T ∗M × R

T ∗M×R = {point x in M, (co)tangent vector p at x, and number}

I The (universal cover of the) previous two examples are
contactomorphic: exists a map φ : (M, ξM)→ (N, ξN) taking
ξM to ξN

Oleg Lazarev UMass Boston Mathematics Department The Haitian Scientific SocietyFlexibility and rigidity in contact and symplectic geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Isotropics

I ξ = kerα is contact structure, i.e. maximally non-integrable
2n-plane distribution on Y 2n+1

I Definition: Λk ⊂ (Y 2n+1, ξ) is isotropic if Λ is tangent to ξ

I Non-slipping car and graph of a genuine function are isotropics

I Basic but important linear algebra fact: if Λk ⊂ (Y 2n+1, ξ)
is isotropic, then k ≤ n (called Legendrian if k = n).
Intuition: contact distribution is maximally non-integrable.

I Finding isotropics is equivalent to solving a PDE given by α,
not easy! Ex. dy

dx = tan(θ), or dz
dx = y
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Classical flexibility results

I Flexibility = topological phenomenon in contact geometry

I Darboux’s theorem: any contact manifold is locally
contactomorphic to (R2n+1, ξstandard = dz −

∑n
i=1 yidxi )

I So no local invariants, unlike Riemannian geometry!

I Gray stability theorem: if (Y , ξt) is deformation of contact
structures on a closed manifold Y , then all equivalent, i.e.
exists maps φt : Y → Y taking ξ to ξt .

I So deformation invariant, unlike complex geometry!

I Weinstein neighborhood theorem: any Legendrian
Λn ⊂ (Y 2n+1, ξ) has a neighborhood that is equivalent to
neighborhood of Λ in 1-jet space J1(Λ)
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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Partial Differential Relations

I Many geometric problems given by a PDE, e.g. existence of
contact structure, contactomorphism, isotropic embedding

I Necessary algebraic condition: there is a solution to the
formal problem given by decoupling the PDE

I Example: a formal solution to differential equation
( df

dx )2 + f (x)2 df
dx = x5 is a solution to equation y2 + yz2 = x5

I Consider i : Solutions ↪→ FormalSolutions; h-principle holds
when i is a (weak) homotopy equivalence, i.e. geometric
problem reduces to algebra

I h-principle is an example of flexibility
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Symplectic manifolds and Weinstein domains

Partial Differential Relations in contact topology

I Definition: A formal contact structure is a 1-form α and a
2-form ω so that α ∧ ωn 6= 0 (i.e. a non-degenerate 2-form ω
on kerα). However, do not require ω 6= dα

I Definition: A formal isotropic embedding is an embedding Lk

and a deformation of tangent planes TLk to isotropic planes
tangent to ξ.

I Question: does h-principle hold for contact structures or
isotropic submanifolds?

I Can a formal isotropic be deformed to a genuine isotropic?
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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Flexibility for isotropics

I Gromov 1970’s: h-principle for subcritical isotropics: two
formally isotopic Λk

1 ,Λ
k
2 ⊂ (Y 2n+1, ξ) with k < n are

genuinely isotopic

I Definition: a Legendrian Λn ⊂ Y 2n+1 is loose if n ≥ 2 and it
has a ‘zig-zag’ in its xz-projection

Figure: Loose chart, i.e. zig-zag, pictured in R2
xz
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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Loose Legendrians

I Murphy’s h-principle for loose Legendrians 2012: formally
isotopic loose Legendrians (in dimensions n ≥ 2) are
Legendrian isotopic; any smooth embedding can be
C 0-approximated by a loose Legendrian.

Figure: Approximating slipping path (t, 0, π/4) by non-slipping path
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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Rigidity in contact geometry

I Gromov 1985: There are non-local, deformation stable
invariants of contact manifolds, Legendrians

called contact
homology and Legendrian contact homology LCH,
Gromov-Witten type invariant defined using J-holomorphic
curves. Related to wrapped Fukaya category, mirror
symmetry, string theory...

I Many Legendrian knots in (R3, ξstd ) are formally isotopic but
not Legendrian isotopic, distinguished by LCH; h-principle fails

Figure: Chekanov Legendrians in R2
xz ; images due to John Etnyre
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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Loose Legendrians, II

I LCH vanishes for loose Legendrians! Existence of (local)
zig-zag kills all symplectic geometry!

Loose Chekanov knots (in high-dimensions) are Legendrian
isotopic

I Open problem: If Λ has vanishing LCH, is it loose?
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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Interpolating between flexibility and rigidity for Legendrians

I h-principle fails in general, but holds for loose Legendrians,
which have LCH = 0.

I Observation: transformation Legendrian Λ to Λloose is
idempotent (Λloose)loose = Λloose and makes LCH(Λloose) = 0.

I Theorem (L., with Sylvan and Tanaka) for any Legendrian Λ
in (Y 2n+1, ξ), n ≥ 3, and any integer P, there is a ‘P-loose’
Legendrian ΛP formally isotopic to Λ with
(ΛP)P

∼= ΛP and LCH(ΛP) ∼= LCH(Λ)[ 1
P ]

I Furthermore, If P = 0, then Λ0 = Λloose ; if P = 1, then
Λ1 = Λ

I Motivated by construction in classical topology called rational
homotopy theory.
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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Rigidity in contact geometry, II

I Similarly, many contact structures are formally
contactomorphic but not contactomorphic

Figure: Standard and overtwisted structures; images due to P. Massot

I Theorem(L.) for a large class of smooth manifolds
Y 2n+1, n ≥ 3, there are infinitely many contact structures.

I h-principle fails in general but holds for over-twisted structures

I Question: what is the boundary between rigidity and
flexibility in contact geometry?

Oleg Lazarev UMass Boston Mathematics Department The Haitian Scientific SocietyFlexibility and rigidity in contact and symplectic geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Rigidity in contact geometry, II

I Similarly, many contact structures are formally
contactomorphic but not contactomorphic

Figure: Standard and overtwisted structures; images due to P. Massot

I Theorem(L.) for a large class of smooth manifolds
Y 2n+1, n ≥ 3, there are infinitely many contact structures.

I h-principle fails in general but holds for over-twisted structures

I Question: what is the boundary between rigidity and
flexibility in contact geometry?

Oleg Lazarev UMass Boston Mathematics Department The Haitian Scientific SocietyFlexibility and rigidity in contact and symplectic geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Rigidity in contact geometry, II

I Similarly, many contact structures are formally
contactomorphic but not contactomorphic

Figure: Standard and overtwisted structures; images due to P. Massot

I Theorem(L.) for a large class of smooth manifolds
Y 2n+1, n ≥ 3, there are infinitely many contact structures.

I h-principle fails in general but holds for over-twisted structures

I Question: what is the boundary between rigidity and
flexibility in contact geometry?

Oleg Lazarev UMass Boston Mathematics Department The Haitian Scientific SocietyFlexibility and rigidity in contact and symplectic geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Rigidity in contact geometry, II

I Similarly, many contact structures are formally
contactomorphic but not contactomorphic

Figure: Standard and overtwisted structures; images due to P. Massot

I Theorem(L.) for a large class of smooth manifolds
Y 2n+1, n ≥ 3, there are infinitely many contact structures.

I h-principle fails in general but holds for over-twisted structures

I Question: what is the boundary between rigidity and
flexibility in contact geometry?

Oleg Lazarev UMass Boston Mathematics Department The Haitian Scientific SocietyFlexibility and rigidity in contact and symplectic geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Symplectic manifolds

I Symplectic manifolds are even-dimensional siblings of contact
manifolds

I Natural setting to study Newtonian mechanics, precisely
Hamiltonian dynamics

I Definition: a symplectic structure ω on a manifold M2n is a
2-form ω with ωn 6= 0 and dω = 0 (a differential equation)

I Main example: (R2n,
∑n

i=1 dqi ∧ dpi ), with qi position
coordinates and pi momentum coordinates (canonical
coordinates)

I Symplectic Darboux theorem: any symplectic manifold
(M, ω) is locally (R2n,

∑n
i=1 dqi ∧ dpi )
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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Symplectic manifolds, II

I Ex. phase space T ∗M = {point x in M and covector p at x}

I Ex. if (Y 2n+1, ξ) is a contact manifold, then (Y 2n+1, ξ)× R
is symplectic

I As for contact structures, one can define isotropics, formal
symplectic structure, discuss flexibility/rigidity...
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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Hamiltonian dynamics on symplectic manifolds

I To any function H : (M, ω)→ R can associate a
(Hamiltonian) vector field XH on M; closed trajectories are
called Hamiltonian orbits.

I Ex. H(q, p) = V (q) + p2

2m : R2n
q,p → R has Hamiltonian vector

field XH whose trajectories satisfy two first-order differential
equations

dq

dt
=

p

m
and

dp

dt
= −∂V

∂q
(1)

I Can be converted into Newton’s equation F = ma with force
F = −∂V

∂q

I J-holomorphic curve invariants like Floer theory can give
non-trivial lower bounds on the number of closed Hamiltonian
orbits
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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Weinstein domains

I An exact symplectic manifold (M2n, dα) has contact
boundary if (∂M, kerα) is a contact manifold

I Example: (B2n, αstandard = 1
2 (
∑n

i=1 xidyi − yidxi ))

I Weinstein: can attach a handle to a (framed) isotropic
sphere Λk−1 ⊂ ∂M2n and get a new symplectic manifold with
contact boundary M2n ∪ Hk

Λ

Figure: Weinstein handle attachment
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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Weinstein domains, II

I Definition: a Weinstein domain W 2n is iterated Weinstein
handle attachment to (B2n, ωstandard ), i.e. symplectic
handlebody

I W 2n is homotopy equivalent to n-dimensional CW complex

I Andreotti-Frankel: affine varieties V 2n have Weinstein
structure, so homotopy equivalent to n-dimensional complex

I Example: T ∗Sn = B2n ∪ Hn
Λunknot

I Theorem (Mclean) There are infinitely many Weinstein
structures on B2n.
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Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Flexibility for Weinstein domains

I Definition: a Weinstein domain W 2n, n ≥ 3 is flexible if all
n-handles are attached along loose Legendrians

Figure: T ∗Sn and T ∗Sn
flex

I Cieliebak-Eliashberg h-principle: Two flexible Weinstein
structures on the same smooth manifold are symplectomorphic

I Theorem (L.) Suppose that W1,W2 are flexible with different
topologies. Then ∂W1, ∂W2 have different contact structures.

I Use flexible techniques to create rigid contact structures.
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Modifying Weinstein presentations

I Can modify Weinstein presentation by doing handle-slides and
create/cancel handles; easy to create more handles

Figure: Handle-slides and handle cancellation/creation

I WCrit(W ) : = minimum number of Weinstein handles for W
Crit(W ) : = minimum number of smooth handles

I WCrit(M) ≥ Crit(M) ≥ rank H∗(M;Z)
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Modifying Weinstein presentations, II

I Smale’s h-cobordism theorem: if dimM ≥ 5, π1(M) = 0,
then Crit(M) = rank H∗(M;Z); key is Whitney trick

I Cieliebak-Eliashberg: WCrit(Wflex ) = Crit(W )

I McLean: exist W with WCrit(W ) ≥ Crit(W ) + 2; Whitney
trick fails!

I L. any Weinstein W 2n, n ≥ 3, has WCrit(W ) ≤ Crit(W ) + 2

I Flexibility implies structural results on rigid invariants, for
example bounds on number of generators of Fukaya category.

I Question: what is the interaction between symplectic
flexibility and rigidity?
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Thank You!
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