Flexibility and rigidity in contact and symplectic geometry

Oleg Lazarev UMass Boston Mathematics Department

The Haitian Scientific Society

April 29, 2023

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

・ロト ・回ト ・ヨト ・ヨト

Rolling without slipping

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

・ロト ・回ト ・ヨト ・ヨト

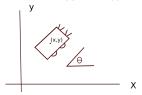
Rolling without slipping

Consider a car in ℝ² with position x, y and angle θ with the x-axis; configuration space is {(x, y, θ)} = ℝ² × S¹

イロト イヨト イヨト イヨト

Rolling without slipping

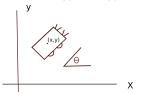
Consider a car in ℝ² with position x, y and angle θ with the x-axis; configuration space is {(x, y, θ)} = ℝ² × S¹



・ 同 ト ・ ヨ ト ・ ヨ ト

Rolling without slipping

Consider a car in ℝ² with position x, y and angle θ with the x-axis; configuration space is {(x, y, θ)} = ℝ² × S¹

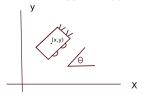


If the car *slips*, its path (x(t), y(t), θ(t)) can be arbitrary; for example (t, 0, π/4).

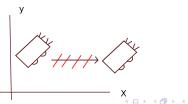
通 ト イ ヨ ト イ ヨ ト

Rolling without slipping

Consider a car in ℝ² with position x, y and angle θ with the x-axis; configuration space is {(x, y, θ)} = ℝ² × S¹



If the car *slips*, its path (x(t), y(t), θ(t)) can be arbitrary; for example (t, 0, π/4).



Rolling without slipping, II

 If car rolls without slipping, then θ determines direction of motion: ^{dy}/_{dx} = tan(θ)

イロン 不同 とうほう 不同 とう

Rolling without slipping, II

• If car rolls without slipping, then θ determines direction of motion: $\frac{dy}{dx} = \tan(\theta)$

Х

х

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

Rolling without slipping, II

- If car rolls without slipping, then θ determines direction of motion: $\frac{dy}{dx} = \tan(\theta)$
- Finding a non-slipping path (x(t), y(t), θ(t)) is equivalent to solving differential equation dy/dx = tan(θ)!

Rolling without slipping, II

- If car rolls without slipping, then θ determines direction of motion: $\frac{dy}{dx} = \tan(\theta)$
- Finding a non-slipping path (x(t), y(t), θ(t)) is equivalent to solving differential equation dy/dx = tan(θ)!
- A path $(x(t), y(t), \theta(t))$ is non-slipping if tangent to 2-planes

$$\xi^2 := \{ \text{vectors } v \text{ at } (x, y, \theta) \text{ so } v_y = \tan(\theta)v_x \} = \ker(dy - \tan(\theta)dx)$$

・ 同 ト ・ 三 ト ・ 三

Rolling without slipping, II

- If car rolls without slipping, then θ determines direction of motion: $\frac{dy}{dx} = \tan(\theta)$
- Finding a non-slipping path (x(t), y(t), θ(t)) is equivalent to solving differential equation dy/dx = tan(θ)!
- A path $(x(t), y(t), \theta(t))$ is non-slipping if tangent to 2-planes

 $\xi^2 := \{ \text{vectors } v \text{ at } (x, y, \theta) \text{ so } v_y = \tan(\theta)v_x \} = \ker(dy - \tan(\theta)dx)$

► Question: can any path in R³ be approximated by the motion of a non-slipping car?

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

Formal/genuine functions

• Graph of function z(x) with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3_{x,p,z}$

イロト イヨト イヨト イヨト

Formal/genuine functions

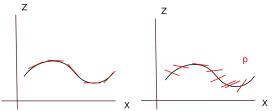
• Graph of function z(x) with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3_{x,p,z}$

Decouple derivative from the function and graph 'formal functions' (x, p(x), z(x)) ⊂ ℝ³

A D D A D D A D D A D D A

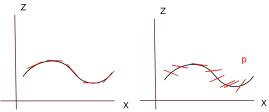
Formal/genuine functions

- Graph of function z(x) with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3_{x,p,z}$
- Decouple derivative from the function and graph 'formal functions' (x, p(x), z(x)) ⊂ ℝ³



Formal/genuine functions

- Graph of function z(x) with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3_{x,p,z}$
- Decouple derivative from the function and graph 'formal functions' (x, p(x), z(x)) ⊂ ℝ³



(x, y(x), z(x)) ⊂ ℝ³ is graph of 'genuine' function if dz/dx = p,
 i.e. tangent to the hyperplane distribution ξ² := ker(dz − pdx)

イロト イポト イヨト イヨト

Formal/genuine functions, II

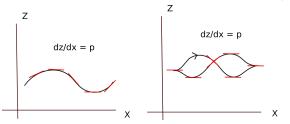
• Genuine functions: curves (x(t), p(t), z(t)) satisfying $\frac{dz}{dx} = p$.

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

イロト イポト イヨト イヨト

Formal/genuine functions, II

• Genuine functions: curves (x(t), p(t), z(t)) satisfying $\frac{dz}{dx} = p$.

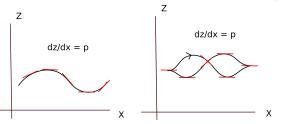


Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

A (10) < A (10) < A (10)</p>

Formal/genuine functions, II

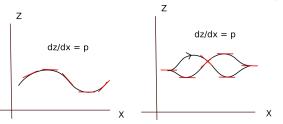
• Genuine functions: curves (x(t), p(t), z(t)) satisfying $\frac{dz}{dx} = p$.



• **Example:** replace ODE $(\frac{df}{dx})^2 + f(x)^2 \frac{df}{dx} = x^5$ with algebraic equation $p^2 + pz^2 = x^5$; curves in this hypersurface tangent to ξ are solutions to the ODE

Formal/genuine functions, II

• Genuine functions: curves (x(t), p(t), z(t)) satisfying $\frac{dz}{dx} = p$.



- **Example:** replace ODE $(\frac{df}{dx})^2 + f(x)^2 \frac{df}{dx} = x^5$ with algebraic equation $p^2 + pz^2 = x^5$; curves in this hypersurface tangent to ξ are solutions to the ODE
- Question: can any formal function approximated by a genuine function?

Contact distribution

Contact distribution ξ and subspaces tangent to ξ are key objects.

イロト イポト イヨト イヨト

Contact distribution

Contact distribution ξ and subspaces tangent to ξ are key objects.

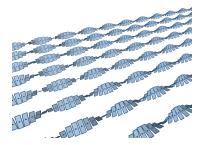


Figure: Contact distribution $\xi_{std} = \ker(dz - ydx) \subset T\mathbb{R}^3$, image by P. Massot.

(4回) (三) (三)

Contact distribution

Contact distribution ξ and subspaces tangent to ξ are key objects.

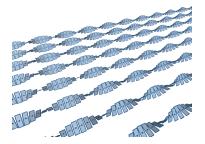


Figure: Contact distribution $\xi_{std} = \ker(dz - ydx) \subset T\mathbb{R}^3$, image by P. Massot.

Observe that the contact planes ξ are very twisted (maximally non-integrable). Largest subspace that is tangent to ξ is 1-dimensional!

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

Contact geometry

• **Definition:** a contact structure ξ on a manifold Y^{2n+1} is a 2n-plane distribution $\xi^{2n} = \ker(\alpha)$ for a 1-form α with $\alpha \wedge (d\alpha)^n \neq 0$, maximally non-integrable

イロト イポト イヨト イヨト

Contact geometry

- **Definition:** a contact structure ξ on a manifold Y^{2n+1} is a 2n-plane distribution $\xi^{2n} = \ker(\alpha)$ for a 1-form α with $\alpha \wedge (d\alpha)^n \neq 0$, maximally non-integrable
- Observation: α ∧ (dα)ⁿ ≠ 0 is a differential inequality, not easy to find solutions.
- ▶ In previous example, $\alpha = dz ydx$ and $d\alpha = dx \wedge dy$ and $\alpha \wedge d\alpha = (dz ydx) \wedge (dx \wedge dy) = dz \wedge dx \wedge dy \neq 0$.

Contact geometry

- **Definition:** a contact structure ξ on a manifold Y^{2n+1} is a 2n-plane distribution $\xi^{2n} = \ker(\alpha)$ for a 1-form α with $\alpha \wedge (d\alpha)^n \neq 0$, maximally non-integrable
- Observation: α ∧ (dα)ⁿ ≠ 0 is a differential inequality, not easy to find solutions.
- ▶ In previous example, $\alpha = dz ydx$ and $d\alpha = dx \wedge dy$ and $\alpha \wedge d\alpha = (dz ydx) \wedge (dx \wedge dy) = dz \wedge dx \wedge dy \neq 0$.
- Examples: (\mathbb{R}^{2n+1},ξ) , 1-jet space $J^1(M) = T^*M \times \mathbb{R}$

 $T^*M \times \mathbb{R} = \{ \text{point } x \text{ in } M, (co) \text{tangent vector } p \text{ at } x, \text{ and number} \}$

イロト イポト イヨト イヨト

Contact geometry

- **Definition:** a contact structure ξ on a manifold Y^{2n+1} is a 2n-plane distribution $\xi^{2n} = \ker(\alpha)$ for a 1-form α with $\alpha \wedge (d\alpha)^n \neq 0$, maximally non-integrable
- Observation: α ∧ (dα)ⁿ ≠ 0 is a differential inequality, not easy to find solutions.
- ▶ In previous example, $\alpha = dz ydx$ and $d\alpha = dx \wedge dy$ and $\alpha \wedge d\alpha = (dz ydx) \wedge (dx \wedge dy) = dz \wedge dx \wedge dy \neq 0$.
- Examples: (\mathbb{R}^{2n+1},ξ) , 1-jet space $J^1(M) = T^*M \times \mathbb{R}$

 $T^*M \times \mathbb{R} = \{ \text{point } x \text{ in } M, (co) \text{tangent vector } p \text{ at } x, \text{ and number} \}$

The (universal cover of the) previous two examples are contactomorphic: exists a map φ : (M, ξ_M) → (N, ξ_N) taking ξ_M to ξ_N

Isotropics

- ► $\xi = \ker \alpha$ is contact structure, i.e. maximally non-integrable 2*n*-plane distribution on Y^{2n+1}
- **Definition:** $\Lambda^k \subset (Y^{2n+1}, \xi)$ is *isotropic* if Λ is tangent to ξ

イロト イヨト イヨト イヨト 三日

Isotropics

- ► $\xi = \ker \alpha$ is contact structure, i.e. maximally non-integrable 2*n*-plane distribution on Y^{2n+1}
- **Definition:** $\Lambda^k \subset (Y^{2n+1}, \xi)$ is *isotropic* if Λ is tangent to ξ
- Non-slipping car and graph of a genuine function are isotropics

イロト イポト イヨト イヨト 二日

Isotropics

- ξ = ker α is contact structure, i.e. maximally non-integrable 2n-plane distribution on Y²ⁿ⁺¹
- **Definition:** $\Lambda^k \subset (Y^{2n+1}, \xi)$ is *isotropic* if Λ is tangent to ξ
- Non-slipping car and graph of a genuine function are isotropics
- Basic but important linear algebra fact: if Λ^k ⊂ (Y²ⁿ⁺¹, ξ) is isotropic, then k ≤ n (called Legendrian if k = n). Intuition: contact distribution is maximally non-integrable.

イロト イポト イヨト イヨト 二日

Isotropics

- ► $\xi = \ker \alpha$ is contact structure, i.e. maximally non-integrable 2*n*-plane distribution on Y^{2n+1}
- **Definition:** $\Lambda^k \subset (Y^{2n+1}, \xi)$ is *isotropic* if Λ is tangent to ξ
- Non-slipping car and graph of a genuine function are isotropics
- Basic but important linear algebra fact: if Λ^k ⊂ (Y²ⁿ⁺¹, ξ) is isotropic, then k ≤ n (called Legendrian if k = n). Intuition: contact distribution is maximally non-integrable.
- Finding isotropics is equivalent to solving a PDE given by α, not easy! Ex. dy/dx = tan(θ), or dz/dx = y

イロト 不得下 イヨト イヨト 二日

Classical flexibility results

Flexibility = topological phenomenon in contact geometry

イロト イポト イヨト イヨト

Classical flexibility results

- Flexibility = topological phenomenon in contact geometry
- ► **Darboux's theorem:** any contact manifold is locally contactomorphic to $(\mathbb{R}^{2n+1}, \xi_{standard} = dz \sum_{i=1}^{n} y_i dx_i)$

イロト イポト イヨト イヨト 二日

Classical flexibility results

- Flexibility = topological phenomenon in contact geometry
- ► **Darboux's theorem:** any contact manifold is locally contactomorphic to $(\mathbb{R}^{2n+1}, \xi_{standard} = dz \sum_{i=1}^{n} y_i dx_i)$
- So no local invariants, unlike Riemannian geometry!

イロト イポト イヨト イヨト

Classical flexibility results

- Flexibility = topological phenomenon in contact geometry
- ► **Darboux's theorem:** any contact manifold is locally contactomorphic to $(\mathbb{R}^{2n+1}, \xi_{standard} = dz \sum_{i=1}^{n} y_i dx_i)$
- So no local invariants, unlike Riemannian geometry!
- Gray stability theorem: if (Y, ξ_t) is deformation of contact structures on a closed manifold Y, then all equivalent, i.e. exists maps φ_t : Y → Y taking ξ to ξ_t.
- So deformation invariant, unlike complex geometry!

イロト 不得 トイラト イラト 一日

Classical flexibility results

- Flexibility = topological phenomenon in contact geometry
- ► **Darboux's theorem:** any contact manifold is locally contactomorphic to $(\mathbb{R}^{2n+1}, \xi_{standard} = dz \sum_{i=1}^{n} y_i dx_i)$
- So no local invariants, unlike Riemannian geometry!
- Gray stability theorem: if (Y, ξ_t) is deformation of contact structures on a closed manifold Y, then all equivalent, i.e. exists maps φ_t : Y → Y taking ξ to ξ_t.
- So deformation invariant, unlike complex geometry!
- Weinstein neighborhood theorem: any Legendrian Λⁿ ⊂ (Y²ⁿ⁺¹, ξ) has a neighborhood that is equivalent to neighborhood of Λ in 1-jet space J¹(Λ)

イロト 不得 トイヨト イヨト 二日

Partial Differential Relations

Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding

Partial Differential Relations

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the formal problem given by decoupling the PDE

(4月) トイヨト イヨト

Partial Differential Relations

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the formal problem given by decoupling the PDE
- **Example:** a formal solution to differential equation $(\frac{df}{dx})^2 + f(x)^2 \frac{df}{dx} = x^5$ is a solution to equation $y^2 + yz^2 = x^5$

イロト イポト イヨト イヨト 二日

Partial Differential Relations

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the formal problem given by decoupling the PDE
- **Example:** a formal solution to differential equation $(\frac{df}{dx})^2 + f(x)^2 \frac{df}{dx} = x^5$ is a solution to equation $y^2 + yz^2 = x^5$
- Consider i : Solutions → FormalSolutions; h-principle holds when i is a (weak) homotopy equivalence, i.e. geometric problem reduces to algebra

イロト イポト イヨト イヨト

Partial Differential Relations

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the formal problem given by decoupling the PDE
- **Example:** a formal solution to differential equation $(\frac{df}{dx})^2 + f(x)^2 \frac{df}{dx} = x^5$ is a solution to equation $y^2 + yz^2 = x^5$
- Consider i : Solutions → FormalSolutions; h-principle holds when i is a (weak) homotopy equivalence, i.e. geometric problem reduces to algebra
- h-principle is an example of flexibility

(ロ) (同) (E) (E) (E) (E)

Partial Differential Relations in contact topology

Definition: A formal contact structure is a 1-form α and a 2-form ω so that α ∧ ωⁿ ≠ 0 (i.e. a non-degenerate 2-form ω on ker α). However, do not require ω ≠ dα

Partial Differential Relations in contact topology

- Definition: A formal contact structure is a 1-form α and a 2-form ω so that α ∧ ωⁿ ≠ 0 (i.e. a non-degenerate 2-form ω on ker α). However, do not require ω ≠ dα
- **Definition:** A *formal* isotropic embedding is an embedding L^k and a deformation of tangent planes TL^k to isotropic planes tangent to ξ .

(4月) トイヨト イヨト

Partial Differential Relations in contact topology

- Definition: A formal contact structure is a 1-form α and a 2-form ω so that α ∧ ωⁿ ≠ 0 (i.e. a non-degenerate 2-form ω on ker α). However, do not require ω ≠ dα
- **Definition:** A *formal* isotropic embedding is an embedding L^k and a deformation of tangent planes TL^k to isotropic planes tangent to ξ .
- Question: does h-principle hold for contact structures or isotropic submanifolds?

(4月) トイヨト イヨト

Partial Differential Relations in contact topology

- Definition: A formal contact structure is a 1-form α and a 2-form ω so that α ∧ ωⁿ ≠ 0 (i.e. a non-degenerate 2-form ω on ker α). However, do not require ω ≠ dα
- **Definition:** A *formal* isotropic embedding is an embedding L^k and a deformation of tangent planes TL^k to isotropic planes tangent to ξ .
- Question: does h-principle hold for contact structures or isotropic submanifolds?
- Can a formal isotropic be deformed to a genuine isotropic?

< ロ > < 同 > < 三 > < 三 >

Flexibility for isotropics

Gromov 1970's: h-principle for subcritical isotropics: two formally isotopic Λ^k₁, Λ^k₂ ⊂ (Y²ⁿ⁺¹, ξ) with k < n are genuinely isotopic</p>

イロト イポト イヨト イヨト

Flexibility for isotropics

- Gromov 1970's: h-principle for subcritical isotropics: two formally isotopic Λ^k₁, Λ^k₂ ⊂ (Y²ⁿ⁺¹, ξ) with k < n are genuinely isotopic</p>
- ▶ Definition: a Legendrian Λⁿ ⊂ Y²ⁿ⁺¹ is *loose* if n ≥ 2 and it has a 'zig-zag' in its xz-projection

< ロ > < 同 > < 三 > < 三 >

Figure: Loose chart, i.e. zig-zag, pictured in \mathbb{R}^2_{xz}

Loose Legendrians

► Murphy's h-principle for loose Legendrians 2012: formally isotopic loose Legendrians (in dimensions n ≥ 2) are Legendrian isotopic; any smooth embedding can be C⁰-approximated by a loose Legendrian.

イロト イポト イヨト イヨト

Loose Legendrians

► Murphy's h-principle for loose Legendrians 2012: formally isotopic loose Legendrians (in dimensions n ≥ 2) are Legendrian isotopic; any smooth embedding can be C⁰-approximated by a loose Legendrian.

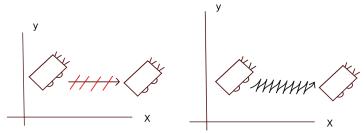


Figure: Approximating slipping path $(t, 0, \pi/4)$ by non-slipping path

Rigidity in contact geometry

 Gromov 1985: There are non-local, deformation stable invariants of contact manifolds, Legendrians

イロト イポト イヨト イヨト

Rigidity in contact geometry

Gromov 1985: There are non-local, deformation stable invariants of contact manifolds, Legendrians called *contact homology* and *Legendrian contact homology* LCH, Gromov-Witten type invariant defined using J-holomorphic curves. Related to wrapped Fukaya category, mirror symmetry, string theory...

イロト イポト イヨト イヨト

Rigidity in contact geometry

- Gromov 1985: There are non-local, deformation stable invariants of contact manifolds, Legendrians called *contact homology* and *Legendrian contact homology* LCH, Gromov-Witten type invariant defined using J-holomorphic curves. Related to wrapped Fukaya category, mirror symmetry, string theory...
- Many Legendrian knots in (R³, ξ_{std}) are formally isotopic but not Legendrian isotopic, distinguished by LCH; h-principle fails

Figure: Chekanov Legendrians in \mathbb{R}^2_{xz} ; images due to John Etnyre

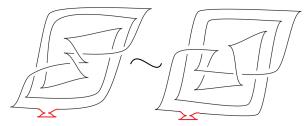
Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

Loose Legendrians, II

LCH vanishes for loose Legendrians! Existence of (local) zig-zag kills all symplectic geometry!

Loose Legendrians, II

 LCH vanishes for loose Legendrians! Existence of (local) zig-zag kills all symplectic geometry! Loose Chekanov knots (in high-dimensions) are Legendrian isotopic



イロト イヨト イヨト イヨト

Loose Legendrians, II

 LCH vanishes for loose Legendrians! Existence of (local) zig-zag kills all symplectic geometry! Loose Chekanov knots (in high-dimensions) are Legendrian isotopic

Open problem: If Λ has vanishing LCH, is it loose?

・ロト ・回ト ・ヨト ・ヨト

Interpolating between flexibility and rigidity for Legendrians

h-principle fails in general, but holds for loose Legendrians, which have LCH = 0.

- h-principle fails in general, but holds for loose Legendrians, which have LCH = 0.
- Observation: transformation Legendrian Λ to Λ_{loose} is idempotent (Λ_{loose})_{loose} = Λ_{loose} and makes LCH(Λ_{loose}) = 0.

イロト イポト イヨト イヨト

- h-principle fails in general, but holds for loose Legendrians, which have LCH = 0.
- Observation: transformation Legendrian Λ to Λ_{loose} is idempotent (Λ_{loose})_{loose} = Λ_{loose} and makes LCH(Λ_{loose}) = 0.
- Theorem (L., with Sylvan and Tanaka) for any Legendrian Λ in (Y²ⁿ⁺¹, ξ), n ≥ 3, and any integer P, there is a 'P-loose' Legendrian Λ_P formally isotopic to Λ with (Λ_P)_P ≅ Λ_P and LCH(Λ_P) ≅ LCH(Λ)[¹/_P]

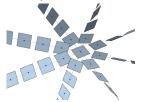
- h-principle fails in general, but holds for loose Legendrians, which have LCH = 0.
- Observation: transformation Legendrian Λ to Λ_{loose} is idempotent (Λ_{loose})_{loose} = Λ_{loose} and makes LCH(Λ_{loose}) = 0.
- Theorem (L., with Sylvan and Tanaka) for any Legendrian Λ in (Y²ⁿ⁺¹, ξ), n ≥ 3, and any integer P, there is a 'P-loose' Legendrian Λ_P formally isotopic to Λ with (Λ_P)_P ≅ Λ_P and LCH(Λ_P) ≅ LCH(Λ)[¹/_P]
- Furthermore, If P = 0, then $\Lambda_0 = \Lambda_{loose}$; if P = 1, then $\Lambda_1 = \Lambda$

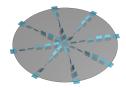
- h-principle fails in general, but holds for loose Legendrians, which have LCH = 0.
- Observation: transformation Legendrian Λ to Λ_{loose} is idempotent (Λ_{loose})_{loose} = Λ_{loose} and makes LCH(Λ_{loose}) = 0.
- Theorem (L., with Sylvan and Tanaka) for any Legendrian Λ in (Y²ⁿ⁺¹, ξ), n ≥ 3, and any integer P, there is a 'P-loose' Legendrian Λ_P formally isotopic to Λ with (Λ_P)_P ≅ Λ_P and LCH(Λ_P) ≅ LCH(Λ)[¹/_P]
- Furthermore, If P = 0, then $\Lambda_0 = \Lambda_{loose}$; if P = 1, then $\Lambda_1 = \Lambda$
- Motivated by construction in classical topology called rational homotopy theory.

イロト イポト イヨト イヨト 二日

Rigidity in contact geometry, II

Similarly, many contact structures are formally contactomorphic but not contactomorphic





A (10) × A (10) × A (10)

Figure: Standard and overtwisted structures; images due to P. Massot

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

Rigidity in contact geometry, II

Similarly, many contact structures are formally contactomorphic but not contactomorphic

Figure: Standard and overtwisted structures; images due to P. Massot

► Theorem(L.) for a large class of smooth manifolds Y²ⁿ⁺¹, n ≥ 3, there are infinitely many contact structures.

< ロ > < 同 > < 回 > < 回 >

Rigidity in contact geometry, II

Similarly, many contact structures are formally contactomorphic but not contactomorphic

Figure: Standard and overtwisted structures; images due to P. Massot

- ► Theorem(L.) for a large class of smooth manifolds Y²ⁿ⁺¹, n ≥ 3, there are infinitely many contact structures.
- h-principle fails in general but holds for over-twisted structures

Rigidity in contact geometry, II

Similarly, many contact structures are formally contactomorphic but not contactomorphic

Figure: Standard and overtwisted structures; images due to P. Massot

- ► Theorem(L.) for a large class of smooth manifolds Y²ⁿ⁺¹, n ≥ 3, there are infinitely many contact structures.
- h-principle fails in general but holds for over-twisted structures
- Question: what is the boundary between rigidity and flexibility in contact geometry?

Symplectic manifolds

 Symplectic manifolds are even-dimensional siblings of contact manifolds

イロト イヨト イヨト イヨト

Symplectic manifolds

- Symplectic manifolds are even-dimensional siblings of contact manifolds
- Natural setting to study Newtonian mechanics, precisely Hamiltonian dynamics

イロン 不同 とうほう 不同 とう

Symplectic manifolds

- Symplectic manifolds are even-dimensional siblings of contact manifolds
- Natural setting to study Newtonian mechanics, precisely Hamiltonian dynamics
- **Definition:** a symplectic structure ω on a manifold M^{2n} is a 2-form ω with $\omega^n \neq 0$ and $d\omega = 0$ (a differential equation)

イロト イポト イヨト イヨト 二日

Symplectic manifolds

- Symplectic manifolds are even-dimensional siblings of contact manifolds
- Natural setting to study Newtonian mechanics, precisely Hamiltonian dynamics
- **Definition:** a symplectic structure ω on a manifold M^{2n} is a 2-form ω with $\omega^n \neq 0$ and $d\omega = 0$ (a differential equation)
- Main example: (ℝ²ⁿ, ∑ⁿ_{i=1} dq_i ∧ dp_i), with q_i position coordinates and p_i momentum coordinates (canonical coordinates)

イロト イポト イヨト イヨト 二日

Symplectic manifolds

- Symplectic manifolds are even-dimensional siblings of contact manifolds
- Natural setting to study Newtonian mechanics, precisely Hamiltonian dynamics
- **Definition:** a symplectic structure ω on a manifold M^{2n} is a 2-form ω with $\omega^n \neq 0$ and $d\omega = 0$ (a differential equation)
- Main example: (ℝ²ⁿ, ∑ⁿ_{i=1} dq_i ∧ dp_i), with q_i position coordinates and p_i momentum coordinates (canonical coordinates)
- Symplectic Darboux theorem: any symplectic manifold (M, ω) is locally (ℝ²ⁿ, Σⁿ_{i=1} dq_i ∧ dp_i)

イロト 不得 トイラト イラト 二日

Symplectic manifolds, II

Ex. phase space $T^*M = \{\text{point } x \text{ in } M \text{ and covector } p \text{ at } x\}$

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

イロト イヨト イヨト イヨト

Symplectic manifolds, II

Ex. phase space T*M = {point x in M and covector p at x}
 Ex. if (Y²ⁿ⁺¹, ξ) is a contact manifold, then (Y²ⁿ⁺¹, ξ) × ℝ is symplectic

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

イロン 不同 とうほう 不同 とう

Symplectic manifolds, II

- ▶ **Ex.** phase space $T^*M = \{\text{point } x \text{ in } M \text{ and covector } p \text{ at } x\}$
- ► **Ex.** if (Y^{2n+1}, ξ) is a contact manifold, then $(Y^{2n+1}, \xi) \times \mathbb{R}$ is symplectic
- As for contact structures, one can define isotropics, formal symplectic structure, discuss flexibility/rigidity...

イロト イポト イヨト イヨト 二日

Hamiltonian dynamics on symplectic manifolds

To any function H : (M, ω) → ℝ can associate a (Hamiltonian) vector field X_H on M; closed trajectories are called Hamiltonian orbits.

(4月) トイヨト イヨト

Hamiltonian dynamics on symplectic manifolds

- To any function H : (M, ω) → ℝ can associate a (Hamiltonian) vector field X_H on M; closed trajectories are called Hamiltonian orbits.
- Ex. H(q, p) = V(q) + ^{p²}/_{2m} : ℝ²ⁿ_{q,p} → ℝ has Hamiltonian vector field X_H whose trajectories satisfy two first-order differential equations

$$\frac{dq}{dt} = \frac{p}{m}$$
 and $\frac{dp}{dt} = -\frac{\partial V}{\partial q}$ (1)

A (1) × (2) × (3) ×

• Can be converted into Newton's equation F = ma with force $F = -\frac{\partial V}{\partial q}$

Hamiltonian dynamics on symplectic manifolds

- To any function H : (M, ω) → ℝ can associate a (Hamiltonian) vector field X_H on M; closed trajectories are called Hamiltonian orbits.
- **Ex.** $H(q, p) = V(q) + \frac{p^2}{2m} : \mathbb{R}^{2n}_{q,p} \to \mathbb{R}$ has Hamiltonian vector field X_H whose trajectories satisfy two first-order differential equations

$$\frac{dq}{dt} = \frac{p}{m}$$
 and $\frac{dp}{dt} = -\frac{\partial V}{\partial q}$ (1)

- Can be converted into Newton's equation F = ma with force $F = -\frac{\partial V}{\partial a}$
- J-holomorphic curve invariants like Floer theory can give non-trivial lower bounds on the number of closed Hamiltonian orbits

Weinstein domains

An exact symplectic manifold (M²ⁿ, dα) has contact boundary if (∂M, ker α) is a contact manifold

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

A (10) × (10) × (10) ×

Weinstein domains

An exact symplectic manifold (M²ⁿ, dα) has contact boundary if (∂M, ker α) is a contact manifold

• **Example:** $(B^{2n}, \alpha_{standard} = \frac{1}{2} (\sum_{i=1}^{n} x_i dy_i - y_i dx_i))$

Weinstein domains

An exact symplectic manifold (M²ⁿ, dα) has contact boundary if (∂M, ker α) is a contact manifold

• **Example:** $(B^{2n}, \alpha_{standard} = \frac{1}{2} (\sum_{i=1}^{n} x_i dy_i - y_i dx_i))$

• Weinstein: can attach a handle to a (framed) isotropic sphere $\Lambda^{k-1} \subset \partial M^{2n}$ and get a new symplectic manifold with contact boundary $M^{2n} \cup H^k_{\Lambda}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Weinstein domains

- An exact symplectic manifold (M²ⁿ, dα) has contact boundary if (∂M, ker α) is a contact manifold
- **Example:** $(B^{2n}, \alpha_{standard} = \frac{1}{2} (\sum_{i=1}^{n} x_i dy_i y_i dx_i))$
- Weinstein: can attach a handle to a (framed) isotropic sphere $\Lambda^{k-1} \subset \partial M^{2n}$ and get a new symplectic manifold with contact boundary $M^{2n} \cup H^k_{\Lambda}$

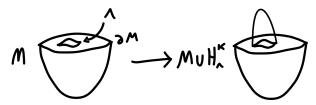


Figure: Weinstein handle attachment

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Weinstein domains, II

▶ Definition: a Weinstein domain W²ⁿ is iterated Weinstein handle attachment to (B²ⁿ, ω_{standard}), i.e. symplectic handlebody

Weinstein domains, II

- ▶ Definition: a Weinstein domain W²ⁿ is iterated Weinstein handle attachment to (B²ⁿ, ω_{standard}), i.e. symplectic handlebody
- W^{2n} is homotopy equivalent to *n*-dimensional CW complex

Weinstein domains, II

- ▶ Definition: a Weinstein domain W²ⁿ is iterated Weinstein handle attachment to (B²ⁿ, ω_{standard}), i.e. symplectic handlebody
- W^{2n} is homotopy equivalent to *n*-dimensional CW complex
- Andreotti-Frankel: affine varieties V²ⁿ have Weinstein structure, so homotopy equivalent to n-dimensional complex

Weinstein domains, II

- ▶ Definition: a Weinstein domain W²ⁿ is iterated Weinstein handle attachment to (B²ⁿ, ω_{standard}), i.e. symplectic handlebody
- W^{2n} is homotopy equivalent to *n*-dimensional CW complex
- Andreotti-Frankel: affine varieties V²ⁿ have Weinstein structure, so homotopy equivalent to n-dimensional complex
- Example: $T^*S^n = B^{2n} \cup H^n_{\Lambda_{unknot}}$
- Theorem (Mclean) There are infinitely many Weinstein structures on B²ⁿ.

Flexibility for Weinstein domains

▶ Definition: a Weinstein domain W²ⁿ, n ≥ 3 is flexible if all n-handles are attached along loose Legendrians

Flexibility for Weinstein domains

▶ Definition: a Weinstein domain W²ⁿ, n ≥ 3 is flexible if all n-handles are attached along loose Legendrians

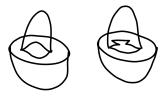


Figure: T^*S^n and $T^*S^n_{flex}$

< ロ > < 同 > < 回 > < 回 >

Flexibility for Weinstein domains

▶ Definition: a Weinstein domain W²ⁿ, n ≥ 3 is flexible if all n-handles are attached along loose Legendrians

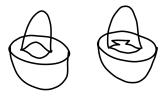


Figure: T^*S^n and $T^*S^n_{flex}$

Cieliebak-Eliashberg h-principle: Two flexible Weinstein structures on the same smooth manifold are symplectomorphic

(4月) トイヨト イヨト

Flexibility for Weinstein domains

▶ Definition: a Weinstein domain W²ⁿ, n ≥ 3 is flexible if all n-handles are attached along loose Legendrians

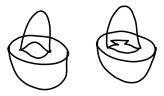


Figure: T^*S^n and $T^*S^n_{flex}$

- Cieliebak-Eliashberg h-principle: Two flexible Weinstein structures on the same smooth manifold are symplectomorphic
- ► Theorem (L.) Suppose that W₁, W₂ are flexible with different topologies. Then ∂W₁, ∂W₂ have different contact structures.

< ロ > < 同 > < 三 > < 三 >

Flexibility for Weinstein domains

▶ Definition: a Weinstein domain W²ⁿ, n ≥ 3 is flexible if all n-handles are attached along loose Legendrians

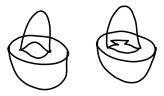


Figure: T^*S^n and $T^*S^n_{flex}$

- Cieliebak-Eliashberg h-principle: Two flexible Weinstein structures on the same smooth manifold are symplectomorphic
- ► Theorem (L.) Suppose that W₁, W₂ are flexible with different topologies. Then ∂W₁, ∂W₂ have different contact structures.
- Use flexible techniques to create rigid contact structures.

Modifying Weinstein presentations

 Can modify Weinstein presentation by doing handle-slides and create/cancel handles; easy to create more handles

・ 同 ト ・ ヨ ト ・ ヨ ト

Modifying Weinstein presentations

 Can modify Weinstein presentation by doing handle-slides and create/cancel handles; easy to create more handles

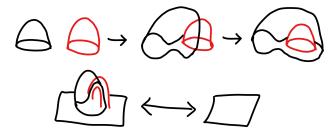


Figure: Handle-slides and handle cancellation/creation

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

▲□ ▶ ▲ □ ▶ ▲ □

Modifying Weinstein presentations

 Can modify Weinstein presentation by doing handle-slides and create/cancel handles; easy to create more handles

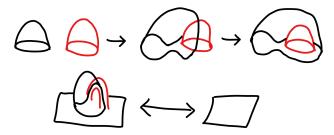


Figure: Handle-slides and handle cancellation/creation

WCrit(W) := minimum number of Weinstein handles for W Crit(W) := minimum number of smooth handles

< ロ > < 同 > < 三 > < 三 >

Modifying Weinstein presentations

 Can modify Weinstein presentation by doing handle-slides and create/cancel handles; easy to create more handles

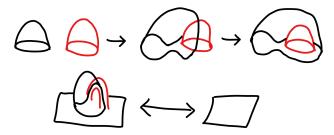


Figure: Handle-slides and handle cancellation/creation

 WCrit(W) := minimum number of Weinstein handles for W Crit(W) := minimum number of smooth handles
 WCrit(M) ≥ Crit(M) ≥ rank H*(M; Z)

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

Modifying Weinstein presentations, II

Smale's h-cobordism theorem: if dim M ≥ 5, π₁(M) = 0, then Crit(M) = rank H*(M; Z); key is Whitney trick

Modifying Weinstein presentations, II

- Smale's h-cobordism theorem: if dim M ≥ 5, π₁(M) = 0, then Crit(M) = rank H*(M; Z); key is Whitney trick
- Cieliebak-Eliashberg: $WCrit(W_{flex}) = Crit(W)$

Modifying Weinstein presentations, II

- Smale's h-cobordism theorem: if dim M ≥ 5, π₁(M) = 0, then Crit(M) = rank H*(M; Z); key is Whitney trick
- Cieliebak-Eliashberg: $WCrit(W_{flex}) = Crit(W)$
- ► McLean: exist W with WCrit(W) ≥ Crit(W) + 2; Whitney trick fails!

Modifying Weinstein presentations, II

- Smale's h-cobordism theorem: if dim M ≥ 5, π₁(M) = 0, then Crit(M) = rank H*(M; Z); key is Whitney trick
- Cieliebak-Eliashberg: $WCrit(W_{flex}) = Crit(W)$
- ► McLean: exist W with WCrit(W) ≥ Crit(W) + 2; Whitney trick fails!
- ▶ L. any Weinstein W^{2n} , $n \ge 3$, has $WCrit(W) \le Crit(W) + 2$

Modifying Weinstein presentations, II

- Smale's h-cobordism theorem: if dim M ≥ 5, π₁(M) = 0, then Crit(M) = rank H*(M; Z); key is Whitney trick
- Cieliebak-Eliashberg: $WCrit(W_{flex}) = Crit(W)$
- ► McLean: exist W with WCrit(W) ≥ Crit(W) + 2; Whitney trick fails!
- ▶ L. any Weinstein W^{2n} , $n \ge 3$, has $WCrit(W) \le Crit(W) + 2$
- Flexibility implies structural results on rigid invariants, for example bounds on number of generators of Fukaya category.

Modifying Weinstein presentations, II

- Smale's h-cobordism theorem: if dim M ≥ 5, π₁(M) = 0, then Crit(M) = rank H*(M; Z); key is Whitney trick
- Cieliebak-Eliashberg: $WCrit(W_{flex}) = Crit(W)$
- ► McLean: exist W with WCrit(W) ≥ Crit(W) + 2; Whitney trick fails!
- ▶ L. any Weinstein W^{2n} , $n \ge 3$, has $WCrit(W) \le Crit(W) + 2$
- Flexibility implies structural results on rigid invariants, for example bounds on number of generators of Fukaya category.
- Question: what is the interaction between symplectic flexibility and rigidity?

Thank You!

Oleg Lazarev UMass Boston Mathematics Department The Ha Flexibility and rigidity in contact and symplectic geometry

・ロト ・回ト ・ヨト ・ヨト