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Background

Cotangent bundles

» Cotangent bundle T*M is an exact symplectic manifold,

Wean = ) dqi A dpi = d( pidq;) = dAcan
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Background

Cotangent bundles

» Cotangent bundle T*M is an exact symplectic manifold,

Wean = ) dqi A dpi = d( pidq;) = dAcan

» Exact w iff there exists Liouville vector field v =), pidip so
that Lyw = w, i.e. pjw = e'w, where ¢; is time t flow of v

» v is a proper vector field, which implies that unit cotangent
bundle ST*M has a contact structure.
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Background

Cotangent bundles

» Cotangent bundle T*M is an exact symplectic manifold,

Wean = ) dqi A dpi = d( pidq;) = dAcan

» Exact w iff there exists Liouville vector field v =), pidip so
that Lyw = w, i.e. pjw = e'w, where ¢; is time t flow of v

» v is a proper vector field, which implies that unit cotangent
bundle ST*M has a contact structure.

» Lagrangian L C T*M is exact if A|, is an exact, i.e. \; = dh
for a function h: L — R!. Legendrian boundary if h|0L = 0.

» Examples: take a smooth submanifold H C M. Then the
conormal Ny = {a € T*M|a(TH) = 0} is an exact
Lagrangian with Legendrian boundary
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Background

Fukaya category

» Let A be any subset of ST*M, called a stop

» Consider exact Lagrangians L C T*M with Legendrian OL
disjoint from A, and isotopies through such Lagrangians
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Background

Fukaya category

» Let A be any subset of ST*M, called a stop
» Consider exact Lagrangians L C T*M with Legendrian OL
disjoint from A, and isotopies through such Lagrangians

» Partially wrapped Fukaya category W/(T*M,A) has objects
exact Lagrangians L C T*M so that JL is disjoint from A
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Background

Fukaya category

» Let A be any subset of ST*M, called a stop

» Consider exact Lagrangians L C T*M with Legendrian OL
disjoint from A, and isotopies through such Lagrangians

» Partially wrapped Fukaya category W/(T*M,A) has objects
exact Lagrangians L C T*M so that JL is disjoint from A

» Morphisms are Floer cochains generated by intersection points

(need to consider all intersection points after “wrapping,”
applying a positive isotopies, disjoint from A)
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Background

Fukaya category

» Let A be any subset of ST*M, called a stop

» Consider exact Lagrangians L C T*M with Legendrian OL
disjoint from A, and isotopies through such Lagrangians

» Partially wrapped Fukaya category W/(T*M,A) has objects
exact Lagrangians L C T*M so that JL is disjoint from A

» Morphisms are Floer cochains generated by intersection points
(need to consider all intersection points after “wrapping,”
applying a positive isotopies, disjoint from A)

» Make W(T*M,A) be (pre)-triangulated by taking
(pre)-triangulated closure, i.e. forming twisted complexes
TwW(T*M,N)
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Background

Mirror symmetry

» Given a toric Y, there is a stopped cotangent bundle of torus
T*(T",A) so that

Tw™W(T*T",\) = DPCon(Y)

> A will be a subset of the conormal of a stratification of T".

TS’

(T*S,+N.) (T*S', N.)
C* C
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Background

Lagrangian intersections with the zero-section

> Nearby Lagrangian conjecture: any closed exact
Lagrangian L in T*M is isotopic through exact Lagrangians to
the zero-section M C T*M.
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Background

Lagrangian intersections with the zero-section

> Nearby Lagrangian conjecture: any closed exact
Lagrangian L in T*M is isotopic through exact Lagrangians to
the zero-section M C T*M.

» Arnold conjecture/Floer theorem: Let ¢:(M) be an exact
Lagrangian isotopy from the zero section M to ¢(M). If
M, ¢(M) intersect transversely, then

IM N ¢(M)| > dim H*(M; R)
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Background

Lagrangian intersections with the zero-section

> Nearby Lagrangian conjecture: any closed exact
Lagrangian L in T*M is isotopic through exact Lagrangians to
the zero-section M C T*M.

» Arnold conjecture/Floer theorem: Let ¢:(M) be an exact
Lagrangian isotopy from the zero section M to ¢(M). If
M, ¢(M) intersect transversely, then

IM A $(M)| > dim H*(M; R)
For general, non-transverse intersections
IM N ¢(M)| > cuplengthH*(M;R) + 1

Cuplength of a graded ring R: the largest n so that there exist
positive degree elements ry, - - - , r, whose product is non-zero.
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Background

Lagrangian intersections via Morse theory

» Arnold conjecture/Floer theorem:
IM N p(M)| > dim H*(M; R)

> Example: consider f : M — R. Then df C T*M is an exact
Lagrangian isotopic to M (via d(tf)) Then

M N df > critical points of f

and intersection is transverse iff f is a Morse function.
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Background

Lagrangian intersections via Morse theory

» Arnold conjecture/Floer theorem:
IM N p(M)| > dim H*(M; R)

> Example: consider f : M — R. Then df C T*M is an exact
Lagrangian isotopic to M (via d(tf)) Then

M N df > critical points of f

and intersection is transverse iff f is a Morse function.
» By classical Morse theory,

|critical points of f| > dim H*(M; R)
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Background

Lagrangian intersections via Morse theory

» Arnold conjecture/Floer theorem:
IM N p(M)| > dim H*(M; R)

> Example: consider f : M — R. Then df C T*M is an exact
Lagrangian isotopic to M (via d(tf)) Then

M N df > critical points of f

and intersection is transverse iff f is a Morse function.
» By classical Morse theory,

|critical points of f| > dim H*(M; R)

» General case uses Floer theory, i.e. infinite-dimensional Morse
theory
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Resolutions of Lagrangians

Viterbo restriction functor

» A Liouville domain is an exact symplectic manifold
(X,w = d\) with proper Liouville vector field v

» A Weinstein domain is a Liouville domain for which exists a
Morse function f : X — R so that v, is the gradient of f.
Weinstein domains have “symplectic handlebody
decompositions” into T*DkK x T*Dn—k
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Resolutions of Lagrangians

Viterbo restriction functor

» A Liouville domain is an exact symplectic manifold
(X,w = d\) with proper Liouville vector field v

» A Weinstein domain is a Liouville domain for which exists a
Morse function f : X — R so that v, is the gradient of f.
Weinstein domains have “symplectic handlebody
decompositions” into T*DkK x T*Dn—k

» Abouzaid-Seidel, Ganatra-Pardon-Shende: If i : Xy C X
are Weinstein and i(X\Xo) is a Weinstein cobordism, there is
a Viterbo restriction functor

i Tw W(X) = Tw W(Xp)
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Resolutions of Lagrangians

Viterbo restriction functor

» A Liouville domain is an exact symplectic manifold
(X,w = d\) with proper Liouville vector field v

» A Weinstein domain is a Liouville domain for which exists a
Morse function f : X — R so that v, is the gradient of f.
Weinstein domains have “symplectic handlebody
decompositions” into T*DkK x T*Dn—k

» Abouzaid-Seidel, Ganatra-Pardon-Shende: If i : Xy C X
are Weinstein and i(X\Xo) is a Weinstein cobordism, there is
a Viterbo restriction functor

i Tw W(X) = Tw W(Xp)

which is a localization functor and takes L to LN Xy if LN Xy
is connected.
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Resolutions of Lagrangians

Resolutions from Viterbo restriction

> If LNXo= L1 H R H L, C Xo, then I*(L) is a twisted
complex on Ly []---]] Lk, i.e. i*(L) has a resolution
(@iLivd)-
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Resolutions of Lagrangians

Resolutions from Viterbo restriction

> If LNXo= L1 H R H L, C Xo, then I*(L) is a twisted
complex on Ly []---]] Lk, i.e. i*(L) has a resolution
(@®iL;,d). In the figure, i*L = Cone(Ly - L)

L L

N
Y

Xo
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Resolutions of Lagrangians

Resolutions from Viterbo restriction

> If LNXo= L1 H R H L, C Xo, then I*(L) is a twisted
complex on Ly []---]] Lk, i.e. i*(L) has a resolution
(@®iL;,d). In the figure, i*L = Cone(Ly - L)

L]
\{)LUX"

> Example: If Ag C A, then (T*M,Ag) C (T*M,N) is a
subdomain. So there are localization functors

Tw W(T*SY, N,) — Tw W(T*SY, +N,) — Tw W(T*St)
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Resolutions of Lagrangians

Resolutions from Viterbo restriction

> If LNXo= L1 H R H L, C Xo, then I*(L) is a twisted
complex on Ly []---]] Lk, i.e. i*(L) has a resolution
(@®iL;,d). In the figure, i*L = Cone(Ly - L)

L]
\{)LLJXo

> Example: If Ag C A, then (T*M,Ag) C (T*M,N) is a
subdomain. So there are localization functors

Tw W(T*SY, N,) — Tw W(T*SY, +N,) — Tw W(T*St)
which are mirror to the restriction localizations

DP Coh(PP') — DPCoh(C!) — DP Coh(C*)
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Resolutions of Lagrangians

Resolutions from Lagrangian intersections

» Example: Consider T*Mg,.y C T*M, whose complement is
the trivial cobordism ST*M x [0,1]. Then i* is equivalent to
the identity functor.
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Resolutions of Lagrangians

Resolutions from Lagrangian intersections

» Example: Consider T*Mg,.y C T*M, whose complement is
the trivial cobordism ST*M x [0,1]. Then i* is equivalent to
the identity functor.

» Pick a Morse function f : M — R. Then df C T*M intersects
M transversely and near M, df looks like a cotangent fibers;
that is, df N T*Mgmay is a disjoint union of cotangent fibers.

™'
Il ‘\ ™s ‘smaH

—
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Resolutions of Lagrangians

Resolutions from Lagrangian intersections

» Example: Consider T*Mg,.y C T*M, whose complement is
the trivial cobordism ST*M x [0,1]. Then i* is equivalent to
the identity functor.

» Pick a Morse function f : M — R. Then df C T*M intersects
M transversely and near M, df looks like a cotangent fibers;
that is, df N T*Mgmay is a disjoint union of cotangent fibers.

™'
N\

Il ‘\ TS sl

—

» Corollary: M = df = j*(df) has a resolution into cotangent
fibers: M = (Dyecrie(r) Tx M, d). For example,

S = Cone(T;S' "5 T;S) & O = Cone(Oc- = Oc-)
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Resolutions of Lagrangians

Rouquier dimension

» Let C be a (pre)-triangulated category and let G be a
split-generator, i.e. all objects are iterated cones (and
summands) of G.

» Rouquier dimension: let RDim(C) be the minimal number
of cones needed to split-generate C using a split-generator G,
minimized over all split-generators.
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Resolutions of Lagrangians

Rouquier dimension

» Let C be a (pre)-triangulated category and let G be a
split-generator, i.e. all objects are iterated cones (and
summands) of G.

» Rouquier dimension: let RDim(C) be the minimal number
of cones needed to split-generate C using a split-generator G,
minimized over all split-generators.

» Diagonal dimension: let A C C°? ® C — mod be the
diagonal bimodule (representing the identity endofunctor).
Then DDim(C) is minimum number of cones needed to
split-generate A using product objects ¢ ® c’.
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Resolutions of Lagrangians

Rouquier dimension

» Let C be a (pre)-triangulated category and let G be a
split-generator, i.e. all objects are iterated cones (and
summands) of G.

» Rouquier dimension: let RDim(C) be the minimal number
of cones needed to split-generate C using a split-generator G,
minimized over all split-generators.

» Diagonal dimension: let A C C°? ® C — mod be the
diagonal bimodule (representing the identity endofunctor).
Then DDim(C) is minimum number of cones needed to
split-generate A using product objects ¢ ® c’.

» Rouquier: RDim(C) < DDim(C).

Idea: given a resolution of A = (®;¢; ® ¢/, d) into product
objects, get a resolution of an arbitrary object ¢ of C by
convolution, i.e. ¢ = (®;Hom(cj,c) ® ¢!, d)
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Resolutions of Lagrangians

Rouquier dimension in symplectic geometry

» Ganatra-Pardon Shende: There is an equivalence
W(X x X) — mod = W(X)P @ W(X) — mod.

» Product Lagrangians corresponds to product objects, and the
geometric diagonal corresponds to the diagonal bimodule.
Hence, to bound DDim(W/(X)) just need to resolve Ax in
terms of product Lagrangians.
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Resolutions of Lagrangians

Rouquier dimension in symplectic geometry

» Ganatra-Pardon Shende: There is an equivalence
W(X x X) — mod = W(X)P @ W(X) — mod.

» Product Lagrangians corresponds to product objects, and the
geometric diagonal corresponds to the diagonal bimodule.
Hence, to bound DDim(W/(X)) just need to resolve Ax in
terms of product Lagrangians.

> Example: Diagonal of T*M° x T*M is equivalent to
Na C T*M x T*M. By picking a Morse function
f: A =M — R! and perturbing Na using f, obtain a
resolution of Ay = (©xecrie(r) TAM x TiM, d).
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Resolutions of Lagrangians

Rouquier dimension in symplectic geometry

» Ganatra-Pardon Shende: There is an equivalence
W(X x X) — mod = W(X)P @ W(X) — mod.

» Product Lagrangians corresponds to product objects, and the
geometric diagonal corresponds to the diagonal bimodule.
Hence, to bound DDim(W/(X)) just need to resolve Ax in
terms of product Lagrangians.

> Example: Diagonal of T*M° x T*M is equivalent to
Na C T*M x T*M. By picking a Morse function
f: A =M — R! and perturbing Na using f, obtain a
resolution of Ay = (©xecrie(r) TAM x TiM, d).

> Bai-Cote:

RDim(W(T*M)) < DDim(W(T*M)) < |Crit(f)| — 1

Oleg Lazarev UMass Boston Mathematics Department Syzygie A symplectic geometric view on syzygies



Resolutions of Lagrangians

Rouquier dimension in symplectic geometry

» Ganatra-Pardon Shende: There is an equivalence
W(X x X) — mod = W(X)P @ W(X) — mod.

» Product Lagrangians corresponds to product objects, and the
geometric diagonal corresponds to the diagonal bimodule.
Hence, to bound DDim(W/(X)) just need to resolve Ax in
terms of product Lagrangians.

> Example: Diagonal of T*M° x T*M is equivalent to
Na C T*M x T*M. By picking a Morse function
f: A =M — R! and perturbing Na using f, obtain a
resolution of Ay = (©xecrie(r) TAM x TiM, d).

> Bai-Cote:

RDim(W(T*M)) < DDim(W(T*M)) < |Crit(f)| — 1

To bound RDim(W/(T*M,N)) need to consider Morse
functions f so that df is disjoint from A X Ry C T*M.
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Resolutions of Lagrangians

Rouquier dimension for arbitrary Weinstein domains

» Given a Weinstein domain X, let the skeleton sx C X be the
stable set of the Liouville vector field.

> Example: if X = T*M, skeleton is the zero-section M.
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Resolutions of Lagrangians

Rouquier dimension for arbitrary Weinstein domains

» Given a Weinstein domain X, let the skeleton sx C X be the
stable set of the Liouville vector field.

> Example: if X = T*M, skeleton is the zero-section M.

> Bai-Cote: Suppose that there is a Hamiltonian isotopy
¢r : X — X so that cx N ¢(cx) intersect transversely. Then

RDIm(W(X)) < DDim(W(X)) < |é(cx) N ex| — 1
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Resolutions of Lagrangians

Lusternik-Schnirelmann category and Rouquier dimension

» The Lusternik-Schnirelmann category LS(M) is the minimum
number of null-homotopic subsets U; of M needed to cover M.

cuplength(H*(M)) + 1 < LS(M) < |Crit(f)|
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Resolutions of Lagrangians

Lusternik-Schnirelmann category and Rouquier dimension

» The Lusternik-Schnirelmann category LS(M) is the minimum
number of null-homotopic subsets U; of M needed to cover M.

cuplength(H*(M)) + 1 < LS(M) < |Crit(f)|

» Hanlon-Hicks-L.: RDim(W(T*M)) < LS(M) —1

» Idea: use fact that TwW/(T*M) can be expressed as a
homotopy colimit of TwW/(T*U) by Ganatra-Pardon-Shende
colimit formula, and that Rouquier dimension behaves well
under colimits.
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Resolutions of Lagrangians

Lusternik-Schnirelmann category and Rouquier dimension

» The Lusternik-Schnirelmann category LS(M) is the minimum
number of null-homotopic subsets U; of M needed to cover M.

cuplength(H*(M)) + 1 < LS(M) < |Crit(f)|

» Hanlon-Hicks-L.: RDim(W(T*M)) < LS(M) —1

» Idea: use fact that TwW/(T*M) can be expressed as a
homotopy colimit of TwW/(T*U) by Ganatra-Pardon-Shende
colimit formula, and that Rouquier dimension behaves well
under colimits.

» Conjecture: RDim(W(T*M)) = cuplength(H*(M)).

Oleg Lazarev UMass Boston Mathematics Department Syzygie A symplectic geometric view on syzygies



Resolutions of Lagrangians

Lusternik-Schnirelmann category and Rouquier dimension

» The Lusternik-Schnirelmann category LS(M) is the minimum
number of null-homotopic subsets U; of M needed to cover M.

cuplength(H*(M)) + 1 < LS(M) < |Crit(f)|

v

Hanlon-Hicks-L.: RDim(W(T*M)) < LS(M) —1

» Idea: use fact that TwW/(T*M) can be expressed as a
homotopy colimit of TwW/(T*U) by Ganatra-Pardon-Shende
colimit formula, and that Rouquier dimension behaves well
under colimits.

» Conjecture: RDim(W(T*M)) = cuplength(H*(M)).

Hanlon-Hicks-L. proved that minimum generation time using

the fiber is at least cuplength, but need to do it for all

generators.

Oleg Lazarev UMass Boston Mathematics Department Syzygie. A symplectic geometric view on syzygies



Resolutions of Lagr:

Thank You!
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