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Background
Resolutions of Lagrangians

Cotangent bundles

I Cotangent bundle T ∗M is an exact symplectic manifold,

ωcan =
∑
i

dqi ∧ dpi = d(
∑
i

pidqi ) = dλcan

I Exact ω iff there exists Liouville vector field v =
∑

i pi∂ip so
that Lvω = ω, i.e. φ∗tω = etω, where φt is time t flow of v

I v is a proper vector field, which implies that unit cotangent
bundle ST ∗M has a contact structure.

I Lagrangian L ⊂ T ∗M is exact if λ|L is an exact, i.e. λL = dh
for a function h : L→ R1. Legendrian boundary if h|∂L = 0.

I Examples: take a smooth submanifold H ⊂ M. Then the
conormal NH = {α ∈ T ∗M|α(TH) = 0} is an exact
Lagrangian with Legendrian boundary
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Background
Resolutions of Lagrangians

Fukaya category

I Let Λ be any subset of ST ∗M, called a stop

I Consider exact Lagrangians L ⊂ T ∗M with Legendrian ∂L
disjoint from Λ, and isotopies through such Lagrangians

I Partially wrapped Fukaya category W (T ∗M,Λ) has objects
exact Lagrangians L ⊂ T ∗M so that ∂L is disjoint from Λ

I Morphisms are Floer cochains generated by intersection points
(need to consider all intersection points after “wrapping,”
applying a positive isotopies, disjoint from Λ)

I Make W (T ∗M,Λ) be (pre)-triangulated by taking
(pre)-triangulated closure, i.e. forming twisted complexes
TwW (T ∗M,Λ)
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Background
Resolutions of Lagrangians

Mirror symmetry

I Given a toric Y , there is a stopped cotangent bundle of torus
T ∗(T n,Λ) so that

TwπW (T ∗T n,Λ) ∼= DbCoh(Y )

I Λ will be a subset of the conormal of a stratification of T n.
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Background
Resolutions of Lagrangians

Lagrangian intersections with the zero-section

I Nearby Lagrangian conjecture: any closed exact
Lagrangian L in T ∗M is isotopic through exact Lagrangians to
the zero-section M ⊂ T ∗M.

I Arnold conjecture/Floer theorem: Let φt(M) be an exact
Lagrangian isotopy from the zero section M to φ(M). If
M, φ(M) intersect transversely, then

|M ∩ φ(M)| ≥ dimH∗(M;R)

For general, non-transverse intersections

|M ∩ φ(M)| ≥ cuplengthH∗(M;R) + 1

Cuplength of a graded ring R: the largest n so that there exist
positive degree elements r1, · · · , rn whose product is non-zero.
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Background
Resolutions of Lagrangians

Lagrangian intersections via Morse theory

I Arnold conjecture/Floer theorem:

|M ∩ φ(M)| ≥ dimH∗(M;R)

I Example: consider f : M → R. Then df ⊂ T ∗M is an exact
Lagrangian isotopic to M (via d(tf )) Then

M ∩ df ↔ critical points of f

and intersection is transverse iff f is a Morse function.

I By classical Morse theory,

|critical points of f| ≥ dimH∗(M;R)

I General case uses Floer theory, i.e. infinite-dimensional Morse
theory
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Background
Resolutions of Lagrangians

Viterbo restriction functor

I A Liouville domain is an exact symplectic manifold
(X , ω = dλ) with proper Liouville vector field vλ

I A Weinstein domain is a Liouville domain for which exists a
Morse function f : X → R so that vλ is the gradient of f .
Weinstein domains have “symplectic handlebody
decompositions” into T ∗Dk × T ∗Dn−k

I Abouzaid-Seidel, Ganatra-Pardon-Shende: If i : X0 ⊂ X
are Weinstein and i(X\X0) is a Weinstein cobordism, there is
a Viterbo restriction functor

i∗ : Tw W (X )→ Tw W (X0)

which is a localization functor and takes L to L ∩ X0 if L ∩ X0

is connected.
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Background
Resolutions of Lagrangians

Resolutions from Viterbo restriction

I If L ∩ X0 = L1
∐
· · ·

∐
Lk ⊂ X0, then i∗(L) is a twisted

complex on L1
∐
· · ·

∐
Lk , i.e. i∗(L) has a resolution

(⊕iLi , d).

In the figure, i∗L = Cone(L0
γ→ L)

I Example: If Λ0 ⊂ Λ, then (T ∗M,Λ0) ⊂ (T ∗M,Λ) is a
subdomain. So there are localization functors

Tw W (T ∗S1,N∗)→ Tw W (T ∗S1,+N∗)→ Tw W (T ∗S1)

which are mirror to the restriction localizations

DbCoh(P1)→ DbCoh(C1)→ DbCoh(C∗)
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Background
Resolutions of Lagrangians

Resolutions from Lagrangian intersections

I Example: Consider T ∗Msmall ⊂ T ∗M, whose complement is
the trivial cobordism ST ∗M × [0, 1]. Then i∗ is equivalent to
the identity functor.

I Pick a Morse function f : M → R. Then df ⊂ T ∗M intersects
M transversely and near M, df looks like a cotangent fibers;
that is, df ∩ T ∗Msmall is a disjoint union of cotangent fibers.

I Corollary: M ∼= df ∼= i∗(df ) has a resolution into cotangent
fibers: M ∼= (⊕x∈Crit(f )T

∗
xM, d). For example,

S1 ∼= Cone(T ∗x S
1 1−γ→ T ∗y S

1)↔ O1
∼= Cone(OC∗

1−x→ OC∗)
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Background
Resolutions of Lagrangians

Rouquier dimension

I Let C be a (pre)-triangulated category and let G be a
split-generator, i.e. all objects are iterated cones (and
summands) of G .

I Rouquier dimension: let RDim(C ) be the minimal number
of cones needed to split-generate C using a split-generator G ,
minimized over all split-generators.

I Diagonal dimension: let ∆ ⊂ C op ⊗ C −mod be the
diagonal bimodule (representing the identity endofunctor).
Then DDim(C ) is minimum number of cones needed to
split-generate ∆ using product objects c ⊗ c ′.

I Rouquier: RDim(C ) ≤ DDim(C ).
Idea: given a resolution of ∆ ∼= (⊕ici ⊗ c ′i , d) into product
objects, get a resolution of an arbitrary object c of C by
convolution, i.e. c ∼= (⊕iHom(ci , c)⊗ c ′i , d)
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Background
Resolutions of Lagrangians

Rouquier dimension in symplectic geometry

I Ganatra-Pardon Shende: There is an equivalence
W (X op × X )−mod ∼= W (X )op ⊗W (X )−mod .

I Product Lagrangians corresponds to product objects, and the
geometric diagonal corresponds to the diagonal bimodule.
Hence, to bound DDim(W (X )) just need to resolve ∆X in
terms of product Lagrangians.

I Example: Diagonal of T ∗Mop × T ∗M is equivalent to
N∆ ⊂ T ∗M × T ∗M. By picking a Morse function
f : ∆ = M → R1 and perturbing N∆ using f , obtain a
resolution of ∆M

∼= (⊕x∈Crit(f )T
∗
xM × T ∗xM, d).

I Bai-Cote:

RDim(W (T ∗M)) ≤ DDim(W (T ∗M)) ≤ |Crit(f )| − 1

To bound RDim(W (T ∗M,Λ)) need to consider Morse
functions f so that df is disjoint from Λ× R>0 ⊂ T ∗M.
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Background
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Rouquier dimension for arbitrary Weinstein domains

I Given a Weinstein domain X , let the skeleton sX ⊂ X be the
stable set of the Liouville vector field.

I Example: if X = T ∗M, skeleton is the zero-section M.

I Bai-Cote: Suppose that there is a Hamiltonian isotopy
φt : X → X so that cX ∩ φ(cX ) intersect transversely. Then

RDim(W (X )) ≤ DDim(W (X )) ≤ |φ(cX ) ∩ cX | − 1
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Lusternik-Schnirelmann category and Rouquier dimension

I The Lusternik-Schnirelmann category LS(M) is the minimum
number of null-homotopic subsets Ui of M needed to cover M.

cuplength(H∗(M)) + 1 ≤ LS(M) ≤ |Crit(f )|

I Hanlon-Hicks-L.: RDim(W (T ∗M)) ≤ LS(M)− 1

I Idea: use fact that TwW (T ∗M) can be expressed as a
homotopy colimit of TwW (T ∗U) by Ganatra-Pardon-Shende
colimit formula, and that Rouquier dimension behaves well
under colimits.

I Conjecture: RDim(W (T ∗M)) = cuplength(H∗(M)).
Hanlon-Hicks-L. proved that minimum generation time using
the fiber is at least cuplength, but need to do it for all
generators.
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Thank You!
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