Weinstein geometry of cotangent bundles

Oleg Lazarev Western Hemisphere Virtual Symplectic Seminar

May 15, 2020

Oleg Lazarev Western Hemisphere Virtual Symplectic Seminar Weinstein geometry of cotangent bundles

Handle anatomy

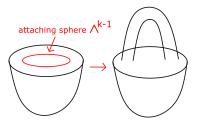
Weinstein handle attachment:

 X^{2n} exact symplectic with contact boundary and isotropic sphere $\Lambda^{k-1} \subset \partial X^{2n} \Longrightarrow$ new exact symplectic $X^{2n} \cup H^k_{\Lambda}$

Handle anatomy

Weinstein handle attachment:

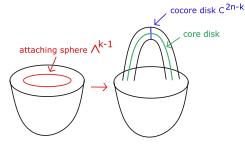
 X^{2n} exact symplectic with contact boundary and isotropic sphere $\Lambda^{k-1} \subset \partial X^{2n} \Longrightarrow$ new exact symplectic $X^{2n} \cup H^k_{\Lambda}$



Handle anatomy

Weinstein handle attachment:

 X^{2n} exact symplectic with contact boundary and isotropic sphere $\Lambda^{k-1} \subset \partial X^{2n} \Longrightarrow$ new exact symplectic $X^{2n} \cup H^k_{\Lambda}$

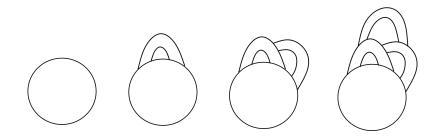


 Co-core of index n handle is Lagrangian disk with Legendrian boundary

lndex $k \le n$ and handles of index less than *n* are "topological"

Weinstein domains

Weinstein domain is result of iterated handle attachment to B²ⁿ_{std} (0-handle), i.e. symplectic handlebody

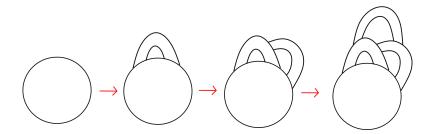


<ロト (四) (三) (三) (三)

Retracts to union of cores = singular Lagrangian skeleton

Weinstein domains

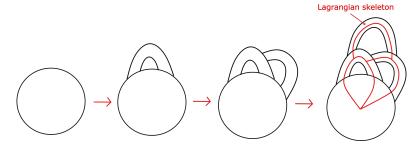
Weinstein domain is result of iterated handle attachment to B²ⁿ_{std} (0-handle), i.e. symplectic handlebody



Retracts to union of cores = singular Lagrangian skeleton

Weinstein domains

Weinstein domain is result of iterated handle attachment to B²ⁿ_{std} (0-handle), i.e. symplectic handlebody



イロト イポト イヨト イヨン

Retracts to union of cores = singular Lagrangian skeleton

Weinstein handle moves

Weinstein homotopy: handle moves change Weinstein presentation without changing symplectic structure:

- 4 同 2 4 三 2 4 三 3

Weinstein handle moves

- Weinstein homotopy: handle moves change Weinstein presentation without changing symplectic structure:
 - 1) Isotope attaching spheres through *isotropics*

(4月) トイラト イラト

Weinstein handle moves

- Weinstein homotopy: handle moves change Weinstein presentation without changing symplectic structure:
 - 1) Isotope attaching spheres through *isotropics*

2) Cancel/create handles

< A > < E

Weinstein handle moves

- Weinstein homotopy: handle moves change Weinstein presentation without changing symplectic structure:
 - 1) Isotope attaching spheres through *isotropics*

2) Cancel/create handles

3) Handleslide _// // // ______

Weinstein handle moves

- Weinstein homotopy: handle moves change Weinstein presentation without changing symplectic structure:
 - 1) Isotope attaching spheres through *isotropics*

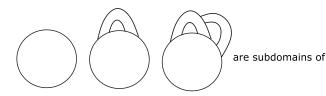
2) Cancel/create handles

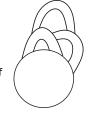
- Same as smooth handle moves, except attaching sphere must be isotropic.
- Question: What do Weinstein presentations of X tell us about the symplectic geometry of X?

A (1) < A (1) </p>

Weinstein subdomains

 Any Weinstein presentation has canonical collection of Weinstein subdomains - take union of handles up to some level





< A > < E

Question: What are all Weinstein subdomains, i.e. singular Lagrangians, of *X*?

Wrapped Fukaya category

• Wrapped Fukaya category $\mathcal{W}(X)$

objects are (twisted complexes of) embedded exact Lagrangians $L \subset X$, closed or with Legendrian boundary $\partial L \subset \partial X$. **morphisms** are wrapped Floer cochains $CW^*(L, K)$

Wrapped Fukaya category

• Wrapped Fukaya category $\mathcal{W}(X)$

objects are (twisted complexes of) embedded exact Lagrangians $L \subset X$, closed or with Legendrian boundary $\partial L \subset \partial X$. **morphisms** are wrapped Floer cochains $CW^*(L, K)$

(D) (A) (A) (A) (A) (A)

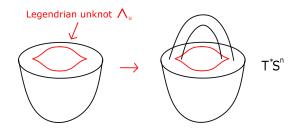
Theorem (Chantraine-Dimitroglou Rizell-Golovko-Ghiggini, Ganatra-Pardon-Shende)

If X^{2n} is Weinstein, the index n co-cores C_1, \dots, C_k generate $\mathcal{W}(X)$.

- Generate: any Lagrangian is isomorphic to a twisted complex (iterated cone) of co-cores, i.e. $W(X) = Tw(C_1, \dots, C_k)$
- Question: which twisted complexes are isomorphic to an embedded exact Lagrangian?

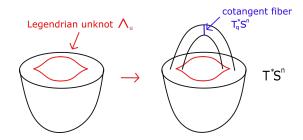
Cotangent bundles

- Focus on $T^*S^n_{std}$; most results hold for more general domains.
- Morse function on Sⁿ with two critical points of index 0, n ⇒ Weinstein structure on T*Sⁿ with 2 handles of index 0, n, i.e. T*Sⁿ_{std} = B²ⁿ_{std} ∪ Hⁿ_{Λ_u}, Λ_u is Legendrian unknot.



Cotangent bundles

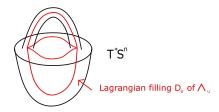
- Focus on $T^*S^n_{std}$; most results hold for more general domains.
- Morse function on Sⁿ with two critical points of index 0, n ⇒ Weinstein structure on T*Sⁿ with 2 handles of index 0, n, i.e. T*Sⁿ_{std} = B²ⁿ_{std} ∪ Hⁿ_{Λ.}, Λ_u is Legendrian unknot.



• One index *n* handle with co-core $T_q^*S^n \implies \mathcal{W}(T^*S^n) \cong Tw \ T_q^*S^n \cong Tw \ C_{-*}(\Omega S^n)$.

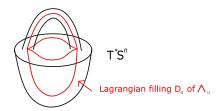
Closed Lagrangians

∧_u has a Lagrangian disk filling Dⁿ_u ⊂ B²ⁿ_{std} and zero-section Sⁿ ⊂ T*Sⁿ is union of Dⁿ_u and core of Hⁿ_{Λ0}



Closed Lagrangians

 \blacktriangleright Λ_u has a Lagrangian disk filling $D_u^n \subset B_{std}^{2n}$ and zero-section $S^n \subset T^*S^n$ is union of D^n_{μ} and core of $H^n_{\Lambda_n}$



Theorem (Fukaya-Seidel-Smith, Nadler-Zaslow, Kragh, Abouzaid)

Any closed exact Lagrangian $L \subset T^*S^n$ is homotopy equivalent to S^n

 \implies any Lagrangian filling of Λ_{μ} is homotopy equivalent to D^{n} .

• More generally, if $T^*S^n = B^{2n}_{std} \cup H^n_{\Lambda}$ is another presentation with *different* Λ , any filling of Λ is homotopy equivalent to D^n_{2}

Exotic presentations

Theorem (L.)

If $n \geq 3$, exist infinitely many different Legendrian spheres $\Lambda_k^{n-1} \subset \partial B_{std}^{2n}$ so that $B_{std}^{2n} \cup H_{\Lambda_k}^n$ is Weinstein homotopic to $T^*S_{std}^n$. None are exact Lagrangian fillable.

Exotic presentations

Theorem (L.)

If $n \geq 3$, exist infinitely many different Legendrian spheres $\Lambda_k^{n-1} \subset \partial B_{std}^{2n}$ so that $B_{std}^{2n} \cup H_{\Lambda_k}^n$ is Weinstein homotopic to $T^*S_{std}^n$. None are exact Lagrangian fillable.

- False for n = 2: if B⁴_{std} ∪ H²_Λ = T^{*}S²_{std}, then Λ is the Legendrian unknot, i.e. all presentations are standard.
- Algebraic version: there are many different objects that generates W(T*Sⁿ) besides T^{*}_aSⁿ.
- Equivalently: Λ_k have different Chekanov-Eliashberg algebras but are derived Morita equivalent.

・ロン ・四 と ・ ヨ と ・ ヨ と

Exotic subdomains

Theorem (L. with Sylvan)

If $n \ge 5$, for any finite collection of primes P (possibly containing 0), there is a Weinstein subdomain $T^*S_P^n \subset T^*S^n$ so that

1)
$$\mathcal{W}(T^*S_P^n) \cong \mathcal{W}(T^*S^n)[\frac{1}{P}]$$

2) $T^*S_P^n$ is a Weinstein subdomain of $T^*S_Q^n$ if and only if $Q \subset P$.

・ロト ・回ト ・ヨト ・ヨト

3)
$$T^*S_P^n$$
 are all diffeomorphic to T^*S^n

So
$$T^*S^n \supseteq T^*S_2^n \supseteq T^*S_{2,3}^n \supseteq T^*S_{2,3,5}^n \cdots \supseteq T^*S_0^n = T^*S_{flex}^n$$

Exotic subdomains

Theorem (L. with Sylvan)

If $n \ge 5$, for any finite collection of primes P (possibly containing 0), there is a Weinstein subdomain $T^*S_P^n \subset T^*S^n$ so that

1)
$$\mathcal{W}(T^*S_P^n) \cong \mathcal{W}(T^*S^n)[\frac{1}{P}]$$

2) $T^*S_P^n$ is a Weinstein subdomain of $T^*S_Q^n$ if and only if $Q \subset P$.

イロン イロン イヨン イヨン

3)
$$T^*S_P^n$$
 are all diffeomorphic to T^*S^n

So
$$T^*S^n \supseteq T^*S_2^n \supseteq T^*S_{2,3}^n \supseteq T^*S_{2,3,5}^n \cdots \supseteq T^*S_0^n = T^*S_{flex}^n$$

▶
$$\mathcal{W}(T^*S_P^n; \mathbb{F}_q) \cong 0$$
 if $q \in P$

Exotic subdomains

Theorem (L. with Sylvan)

If $n \ge 5$, for any finite collection of primes P (possibly containing 0), there is a Weinstein subdomain $T^*S_P^n \subset T^*S^n$ so that

1)
$$\mathcal{W}(T^*S_P^n) \cong \mathcal{W}(T^*S^n)[\frac{1}{P}]$$

2) $T^*S_P^n$ is a Weinstein subdomain of $T^*S_Q^n$ if and only if $Q \subset P$.

3)
$$T^*S_P^n$$
 are all diffeomorphic to T^*S^n

So
$$T^*S^n \supseteq T^*S_2^n \supseteq T^*S_{2,3}^n \supseteq T^*S_{2,3,5}^n \cdots \supseteq T^*S_0^n = T^*S_{\text{flex}}^n$$

▶
$$W(T^*S_P^n; \mathbb{F}_q) \cong 0$$
 if $q \in P$
 $\implies T^*S_P^n$ has no (smooth) closed exact Lagrangians.

Exotic subdomains

Theorem (L. with Sylvan)

If $n \ge 5$, for any finite collection of primes P (possibly containing 0), there is a Weinstein subdomain $T^*S_P^n \subset T^*S^n$ so that

1)
$$\mathcal{W}(T^*S_P^n) \cong \mathcal{W}(T^*S^n)[\frac{1}{P}]$$

- 2) $T^*S_P^n$ is a Weinstein subdomain of $T^*S_Q^n$ if and only if $Q \subset P$.
- 3) $T^*S_P^n$ are all diffeomorphic to T^*S^n

So $T^*S^n \supseteq T^*S_2^n \supseteq T^*S_{2,3}^n \supseteq T^*S_{2,3,5}^n \cdots \supseteq T^*S_0^n = T^*S_{flex}^n$

- ▶ $\mathcal{W}(T^*S_P^n; \mathbb{F}_q) \cong 0$ if $q \in P$ $\implies T^*S_P^n$ has no (smooth) closed exact Lagrangians.
- ► Abouzaid-Seidel: there is an abstract Weinstein domain X_P so that SH(X_P) ≅ SH(T*Sⁿ)[¹/_P]. Conjecturally X_P = T*Sⁿ_P. We show T*Sⁿ_P are nested subdomains of T*Sⁿ.

Classifying subdomains

Theorem (L. with Sylvan)

Any Weinstein subdomain X of T^*S^n satisfies $\mathcal{W}(X) \cong \mathcal{W}(T^*S^n)[\frac{1}{P}]$ for some unique collection of primes P.

(4月) トイラト イラト

Classifying subdomains

Theorem (L. with Sylvan)

Any Weinstein subdomain X of T^*S^n satisfies $\mathcal{W}(X) \cong \mathcal{W}(T^*S^n)[\frac{1}{P}]$ for some unique collection of primes P.

► Theorem holds only for cotangent bundles; even T*M\u03c4T*N has subdomains T*M and T*N that are not prime localizations.

In process, classify which twisted complexes in W(T*Sⁿ) are isomorphic to exact Lagrangian disks.

Flexible Weinstein domains

► Flexible Weinstein domain: all index *n* handles have Legendrian attaching spheres that are *loose*, i.e. zig-zag
 ► Ex: flexible cotangent bundle T*Sⁿ_{flex}, has W(T*Sⁿ_{flex}) ≅ 0
 Loose Legendrian ∧_{loose}
 Loose chart

Ex: subcritical domain with all handles of index less than n

< A > < B >

Flexible Weinstein domains

► Flexible Weinstein domain: all index *n* handles have Legendrian attaching spheres that are *loose*, i.e. zig-zag
 ► Ex: flexible cotangent bundle T*Sⁿ_{flex}, has W(T*Sⁿ_{flex}) ≅ 0
 Loose Legendrian ∧_{loose}
 Loose chart

Ex: *subcritical* domain with all handles of index *less than n* Theorem (Cieliebak-Eliashberg, Murphy)

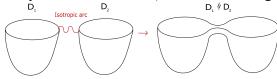
Let $n \ge 3$. If flexible Weinstein structures W_0 , W_1 are homotopic through smooth handle moves (+framing), they are homotopic through Weinstein handle moves.

Flexible subdomains

▶ If $n \ge 3$ and X^{2n} is Weinstein with index n co-cores C_1, \dots, C_k , then $X \setminus C_1 \coprod \dots \coprod C_k$ has no index n handles, i.e. subcritical.

Flexible subdomains

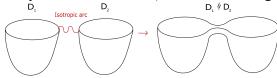
- ▶ If $n \ge 3$ and X^{2n} is Weinstein with index n co-cores C_1, \dots, C_k , then $X \setminus C_1 \coprod \dots \coprod C_k$ has no index n handles, i.e. subcritical.
- ▶ Boundary connected sum: given two disjoint exact Lagrangians D₁, D₂ and isotropic arc from ∂D₁ to ∂D₂, can form boundary connected sum D₁ ↓ D₂, new exact Lagrangian.



(4月) トイラト イラト

Flexible subdomains

- ▶ If $n \ge 3$ and X^{2n} is Weinstein with index n co-cores C_1, \dots, C_k , then $X \setminus C_1 \coprod \dots \coprod C_k$ has no index n handles, i.e. subcritical.
- ▶ Boundary connected sum: given two disjoint exact Lagrangians D₁, D₂ and isotropic arc from ∂D₁ to ∂D₂, can form boundary connected sum D₁ ↓ D₂, new exact Lagrangian.



Theorem (L.)

If $n \ge 3$ and X^{2n} is Weinstein with index n co-cores C_1, \dots, C_k , then $X \setminus C_1 \natural \dots \natural C_k$ is a flexible domain.

• Equivalently: there is a flexible subdomain $V_{flex} \subset X^{2n}$ so that $X^{2n} = V_{flex} \cup H^n_{\Lambda}$ and co-core of H^n_{Λ} is $C_1 \natural \Box \cdot \natural C_k$.

Oleg Lazarev Western Hemisphere Virtual Symplectic Seminar Weinstein geometry of cotangent bundles

Weinstein presentations with few handles

- ► There is a flexible subdomain $V_{flex}^{2n} \subset X^{2n}$ so that $X^{2n} = V_{flex}^{2n} \cup H_{\Lambda}^{n}$.
- For V_{flex}, Weinstein handle moves are the same as smooth handle moves.

Weinstein presentations with few handles

- There is a flexible subdomain $V_{flex}^{2n} \subset X^{2n}$ so that $X^{2n} = V_{flex}^{2n} \cup H_{\Lambda}^{n}$.
- For V_{flex}, Weinstein handle moves are the same as smooth handle moves.

Corollary (L.)

If $n \ge 3$, X^{2n} has a Weinstein presentation with at most two more Weinstein handles than the minimum number of smooth handles.

Result is sharp: sometimes need two more Weinstein handles than smooth handles.

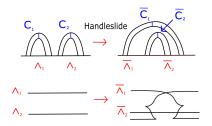
• Unknown if true in dimension n = 2.

Proof of Theorem

- ▶ **Theorem:** if X^{2n} , $n \ge 3$, has two co-cores C_1 , C_2 , then $X^{2n} \setminus C_1
 igtrightarrow C_1
 igtrightarrow C_1
 igtrightarrow C_2
 i$
- Need to realize $C_1
 arrow C_2$ as co-core of some presentation.
- ► Idea: handleslides change co-cores by boundary connected sum.

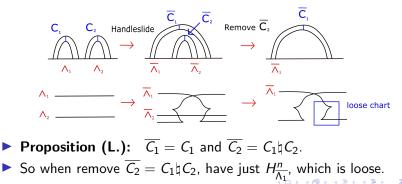
Proof of Theorem

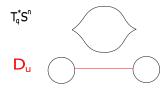
- ▶ **Theorem:** if X^{2n} , $n \ge 3$, has two co-cores C_1 , C_2 , then $X^{2n} \setminus C_1
 igtrightarrow C_1
 igtrightarrow C_1
 igtrightarrow C_2
 i$
- Need to realize $C_1
 arrow C_2$ as co-core of some presentation.
- ► Idea: handleslides change co-cores by boundary connected sum.

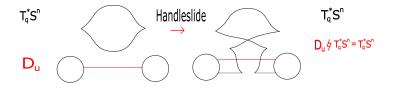


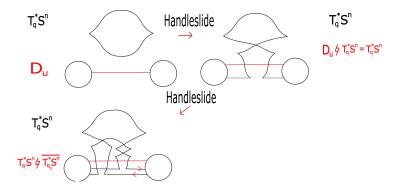
Proof of Theorem

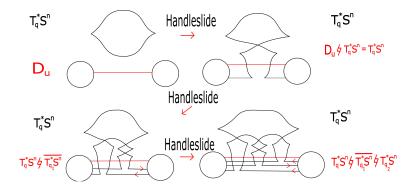
- ▶ **Theorem:** if X^{2n} , $n \ge 3$, has two co-cores C_1 , C_2 , then $X^{2n} \setminus C_1
 igtrightarrow C_1
 igtrightarrow C_1
 igtrightarrow C_2
 i$
- Need to realize $C_1
 arrow C_2$ as co-core of some presentation.
- ► Idea: handleslides change co-cores by boundary connected sum.



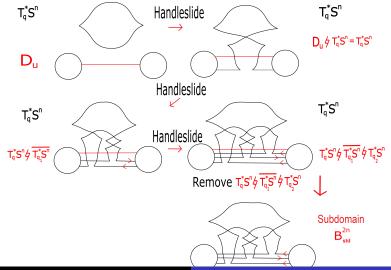








Weinstein homotopy of T^*S^n

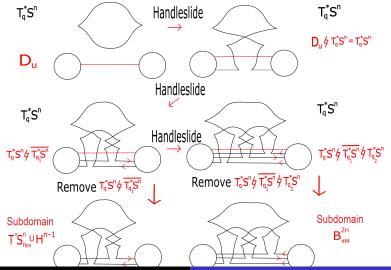


Oleg Lazarev Western Hemisphere Virtual Symplectic Seminar

Weinstein geometry of cotangent bundles

ł

Weinstein homotopy of T^*S^n



Oleg Lazarev Western Hemisphere Virtual Symplectic Seminar

Weinstein geometry of cotangent bundles

ł

Exotic presentations for T^*S^n

• Exists $\Lambda_3 \subset \partial B_{std}^{2n}$ so that $B_{std}^{2n} \cup H_{\Lambda_3}^n = T^*S^n$ and co-core of $H_{\Lambda_3}^n$ is $C_{\Lambda_3} := T_q S^n \natural \overline{T_{q_1}^* S^n} \natural T_{q_2}^* S^n \implies \Lambda_3$ not isotopic to Λ_u and not exact fillable.

(4月) トイラト イラト

Exotic presentations for T^*S^n

Exists Λ₃ ⊂ ∂B²ⁿ_{std} so that B²ⁿ_{std} ∪ Hⁿ_{Λ3} = T*Sⁿ and co-core of Hⁿ_{Λ3} is C_{Λ3} := T_qSⁿ ↓ T^{*}_{q1}Sⁿ ↓ T^{*}_{q2}Sⁿ ⇒ Λ₃ not isotopic to Λ_u and not exact fillable.
 T^{*}_qSⁿ ↓ T^{*}_{q1}Sⁿ ↓ T^{*}_{q2}Sⁿ ≅ T^{*}_qSⁿ ⊕ T^{*}_{q1}Sⁿ[1] ⊕ T^{*}_{q2}Sⁿ generates W(T*Sⁿ)

(4月) トイラト イラト

Exotic presentations for T^*S^n

- Exists $\Lambda_3 \subset \partial B_{std}^{2n}$ so that $B_{std}^{2n} \cup H_{\Lambda_3}^n = T^*S^n$ and co-core of $H_{\Lambda_3}^n$ is $C_{\Lambda_3} := T_q S^n \natural \overline{T_{q_1}^* S^n} \natural T_{q_2}^* S^n \implies \Lambda_3$ not isotopic to Λ_u and not exact fillable.
- $T_q^* S^n \natural \overline{T_{q_1}^* S^n} \natural T_{q_2}^* S^n \cong T_q^* S^n \oplus T_{q_1}^* S^n [1] \oplus T_{q_2}^* S^n \text{ generates } \mathcal{W}(T^* S^n)$

▶ For any category and object A, have $A \oplus A \oplus A[1]$ generates A:

$$Cone(A \oplus A \oplus A[1] \stackrel{\pi_{23}}{\rightarrow} A \oplus A \oplus A[1]) \cong A \oplus A[1]$$

$$Cone(A \oplus A \oplus A[1] \xrightarrow{\pi_{23}} A \oplus A[1]) \cong A$$

A (2) × A (2) × A (2) ×

Algebraic flexibility

Geometric flexibility: If X²ⁿ, n ≥ 3, has co-cores C₁, · · · , C_k and C₁↓ · · · ↓C_k generates Hⁿ(X; Z), then X²ⁿ has a presentation with a single co-core C₁↓ · · · ↓C_k

Algebraic flexibility

Geometric flexibility: If X²ⁿ, n ≥ 3, has co-cores C₁, ..., C_k and C₁↓...↓C_k generates Hⁿ(X; Z), then X²ⁿ has a presentation with a *single* co-core C₁↓...↓C_k ⇒ C₁↓...↓C_k ≅ C₁↓...↓C_k generates W(X).

Algebraic flexibility

- Geometric flexibility: If X²ⁿ, n ≥ 3, has co-cores C₁, ..., C_k and C₁↓...↓C_k generates Hⁿ(X; Z), then X²ⁿ has a presentation with a *single* co-core C₁↓...↓C_k ⇒ C₁↓...↓C_k ≅ C₁↓...↓C_k generates W(X).
- Algebraic flexibility: Let C be an arbitrary triangulated category.

Theorem (Thomason)

If A_1, \dots, A_k are generators of C and $A_1 \oplus \dots \oplus A_k$ generate the Grothendieck group $K_0(C)$, then $A_1 \oplus \dots \oplus A_k$ generate C.

Grothendieck group

How to link geometric and algebraic flexibility?

Theorem (L.)

If X^{2n} is Weinstein, there is a surjective homomorphism $H^n(X;\mathbb{Z}) \to K_0(\mathcal{W}(X))$ taking a n-cocycle to any Poincaré dual Lagrangian representative.

Grothendieck group

How to link geometric and algebraic flexibility?

Theorem (L.)

If X^{2n} is Weinstein, there is a surjective homomorphism $H^n(X;\mathbb{Z}) \to K_0(\mathcal{W}(X))$ taking a n-cocycle to any Poincaré dual Lagrangian representative.

▶ If $[L_1] \equiv [L_2] \in H^n(X; \mathbb{Z})$, then $[L_1] \equiv [L_2] \in K_0(\mathcal{W}(X))$.

True for any n.

Grothendieck group

How to link geometric and algebraic flexibility?

Theorem (L.)

If X^{2n} is Weinstein, there is a surjective homomorphism $H^n(X;\mathbb{Z}) \to K_0(\mathcal{W}(X))$ taking a n-cocycle to any Poincaré dual Lagrangian representative.

- ▶ If $[L_1] \equiv [L_2] \in H^n(X; \mathbb{Z})$, then $[L_1] \equiv [L_2] \in K_0(\mathcal{W}(X))$.
- True for any n.
- Proof idea: index n − 1 handles give relations in Hⁿ(X; Z) and also in W(X²ⁿ) (acyclic twisted complexes)

・ロン ・四マ ・ヨン ・ヨン

Grothendieck group

How to link geometric and algebraic flexibility?

Theorem (L.)

If X^{2n} is Weinstein, there is a surjective homomorphism $H^n(X;\mathbb{Z}) \to K_0(\mathcal{W}(X))$ taking a n-cocycle to any Poincaré dual Lagrangian representative.

- ▶ If $[L_1] \equiv [L_2] \in H^n(X; \mathbb{Z})$, then $[L_1] \equiv [L_2] \in K_0(\mathcal{W}(X))$.
- True for any n.
- Proof idea: index n − 1 handles give relations in Hⁿ(X; Z) and also in W(X²ⁿ) (acyclic twisted complexes)

・ロン ・四マ ・ヨン ・ヨン

Subdomains of Weinstein domains

,

- **Question:** How to construct subdomains of X^{2n} ?
- ▶ Idea: any Lagrangian disk $D^n \subset X^{2n}$ is co-core of some handle ⇒ remove handle to get subdomain $X^{2n} \setminus D^n \subset X$

Subdomains of Weinstein domains

,

- **Question:** How to construct subdomains of X^{2n} ?
- ► Idea: any Lagrangian disk Dⁿ ⊂ X²ⁿ is co-core of some handle ⇒ remove handle to get subdomain X²ⁿ\Dⁿ ⊂ X (for arbitrary disks, X\Dⁿ is a Liouville subdomain)

A (B) > A (B) > A (B) >

Subdomains of Weinstein domains

,

- **Question:** How to construct subdomains of X^{2n} ?
- ► Idea: any Lagrangian disk Dⁿ ⊂ X²ⁿ is co-core of some handle ⇒ remove handle to get subdomain X²ⁿ\Dⁿ ⊂ X (for arbitrary disks, X\Dⁿ is a Liouville subdomain)

Theorem (Ganatra-Pardon-Shende)

If $X \setminus D$ is Weinstein, then $\mathcal{W}(X \setminus D)$ equivalent to $\mathcal{W}(X)/D$, localization of $\mathcal{W}(X)$ by D.

Subdomains of Weinstein domains

,

- **Question:** How to construct subdomains of X^{2n} ?
- ► Idea: any Lagrangian disk Dⁿ ⊂ X²ⁿ is co-core of some handle ⇒ remove handle to get subdomain X²ⁿ\Dⁿ ⊂ X (for arbitrary disks, X\Dⁿ is a Liouville subdomain)

Theorem (Ganatra-Pardon-Shende)

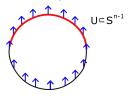
If $X \setminus D$ is Weinstein, then $\mathcal{W}(X \setminus D)$ equivalent to $\mathcal{W}(X)/D$, localization of $\mathcal{W}(X)$ by D.

► Hence to understand subdomains X ⊂ T*Sⁿ suffices to understand Lagrangian disks as objects of W(T*Sⁿ).

▶ Question: What are Lagrangian disks $D^n \subset T^*S^n$?

Abouzaid-Seidel disks

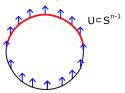
For any smooth codimension 0 U ⊂ Sⁿ⁻¹, Abouzaid-Seidel constructed Lagrangian disk D_U ⊂ T*Dⁿ ⊂ T*Sⁿ.



A (1) < A (1) </p>

Abouzaid-Seidel disks

For any smooth codimension 0 U ⊂ Sⁿ⁻¹, Abouzaid-Seidel constructed Lagrangian disk D_U ⊂ T*Dⁿ ⊂ T*Sⁿ.



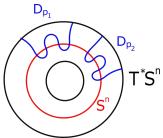
• $CW(S^n, D_U) \cong C^*(D^n, U) \cong \tilde{C}^{*-1}(U)$, reduced Morse cochains $\Longrightarrow D_U \cong \tilde{C}^{*-1}(U) \otimes T_q^* S^n$ in $\mathcal{W}(T^*S^n)$.

► **Example:** if $n \ge 5$, exists Moore space $U_p \subset S^{n-1}$ so that $\tilde{C}^*(U) = \mathbb{Z}[-1] \xrightarrow{p} \mathbb{Z}[-2]$ $\implies D_U \cong T_q^* S^n[1] \xrightarrow{p} T_q^* S^n = Cone(p \cdot Id_{T_q^*S^n}).$

Constructing subdomains

 $\blacktriangleright \text{ Set } T^* S^n_{p_1, \cdots, p_k} := T^* S^n \setminus (D_{p_1} \coprod \cdots \coprod D_{p_k}) + \text{flexible handles}$

▶ By construction, $T^*S_P^n \subset T^*S^n$ and $T^*S_P^n \subset T^*S_Q^n$ if $Q \subset P$



A (1) > A (2) > A

Constructing subdomains

• Set $T^*S^n_{p_1,\cdots,p_k} := T^*S^n \setminus (D_{p_1} \coprod \cdots \coprod D_{p_k}) + \text{flexible handles}$ ▶ By construction, $T^*S_P^n \subset T^*S^n$ and $T^*S_P^n \subset T^*S_O^n$ if $Q \subset P$ D_{p_1} D_p $\blacktriangleright \mathcal{W}(T^*S_P) \cong \mathcal{W}(T^*S^n)/(D_{p_1},\cdots,D_{p_k})$ ▶ Killing $D_p \cong Cone(p \cdot Id_{T^*_aS^n})$ is same as making $p \cdot Id_{T^*_aS^n}$ an isomorphism, i.e. inverting p $\implies \mathcal{W}(T^*S_P) \cong \mathcal{W}(T^*S^n)[\frac{1}{P}]$

Classifying subdomains

► To classify subdomains X ⊂ T*Sⁿ, suffices to classify isomorphism classes of disks D ⊂ T*Sⁿ in W(T*Sⁿ).

Theorem (L. w/ Sylvan)

If $\pi_1(M) = H^1(L) = H^2(M) = 0$ and $i: L \hookrightarrow T^*M$ is a

null-homotopic Lagrangian embedding, then L is isomorphic to $CW(M, L) \otimes T_a^*M$ in $W(T^*M)$.

A (B) > A (B) > A (B) >

Classifying subdomains

► To classify subdomains X ⊂ T*Sⁿ, suffices to classify isomorphism classes of disks D ⊂ T*Sⁿ in W(T*Sⁿ).

Theorem (L. w/ Sylvan)

If $\pi_1(M) = H^1(L) = H^2(M) = 0$ and $i : L \hookrightarrow T^*M$ is a null-homotopic Lagrangian embedding, then L is isomorphic to

 $CW(M,L) \otimes T^*_q M$ in $W(T^*M)$.

- ▶ No higher morphisms in twisted complex for *L*
- ▶ **Caution:** $S^n \subset T^*S^n$ is isomorphic to $T^*_qS^n[n] \xrightarrow{\alpha} T^*_qS^n$, where α is the generator of $CW^{1-n}(T^*_qS^n, T^*_qS^n) \cong C_{n-1}(\Omega S^n) \cong \mathbb{Z}$.

(D) (A) (A) (A) (A)

Classifying subdomains

► To classify subdomains X ⊂ T*Sⁿ, suffices to classify isomorphism classes of disks D ⊂ T*Sⁿ in W(T*Sⁿ).

Theorem (L. w/ Sylvan)

If $\pi_1(M) = H^1(L) = H^2(M) = 0$ and $i : L \hookrightarrow T^*M$ is a null-homotopic Lagrangian embedding, then L is isomorphic to $CW(M, L) \otimes T^*_a M$ in $W(T^*M)$.

- ▶ No higher morphisms in twisted complex for *L*
- **Caution:** $S^n \subset T^*S^n$ is isomorphic to $T^*_qS^n[n] \xrightarrow{\alpha} T^*_qS^n$, where α is the generator of $CW^{1-n}(T^*_qS^n, T^*_qS^n) \cong C_{n-1}(\Omega S^n) \cong \mathbb{Z}$.
- ► Every chain complex over \mathbb{Z} splits into $\mathbb{Z}[1] \xrightarrow{k} \mathbb{Z}$ \implies any null-homotopic *L*, e.g. disk *D*, is isomorphic to $\oplus_i D_{k_i}$ \implies any Weinstein subdomain $X \subset T^*S^n$ has $\mathcal{W}(X) \cong \mathcal{W}(T^*S^n)/D \cong \mathcal{W}(T^*S^n)/(\oplus_i D_{k_i}) \cong \mathcal{W}(T^*S^n)[\frac{1}{P}],$ where *P* is set of primes dividing k_i .

Thank you!

Thank you!

臣

Oleg Lazarev Western Hemisphere Virtual Symplectic Seminar Weinstein geometry of cotangent bundles