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Handle anatomy

I Weinstein handle attachment:
X 2n exact symplectic with contact boundary and isotropic
sphere Λk−1 ⊂ ∂X 2n =⇒ new exact symplectic X 2n ∪ Hk

Λ

I Co-core of index n handle is Lagrangian disk with Legendrian
boundary

I Index k ≤ n and handles of index less than n are “topological”
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Weinstein domains

I Weinstein domain is result of iterated handle attachment to
B2n

std (0-handle), i.e. symplectic handlebody

I Retracts to union of cores = singular Lagrangian skeleton
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Weinstein handle moves

I Weinstein homotopy: handle moves change Weinstein
presentation without changing symplectic structure:

1) Isotope attaching spheres through isotropics

2) Cancel/create handles

3) Handleslide

I Same as smooth handle moves, except attaching sphere must
be isotropic.

I Question: What do Weinstein presentations of X tell us about
the symplectic geometry of X?
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Weinstein subdomains

I Any Weinstein presentation has canonical collection of
Weinstein subdomains - take union of handles up to some level

Question: What are all Weinstein subdomains, i.e. singular
Lagrangians, of X?
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Wrapped Fukaya category

I Wrapped Fukaya category W(X )

objects are (twisted complexes of) embedded exact Lagrangians
L ⊂ X , closed or with Legendrian boundary ∂L ⊂ ∂X .
morphisms are wrapped Floer cochains CW ∗(L,K )

Theorem (Chantraine-Dimitroglou Rizell-Golovko-Ghiggini,
Ganatra-Pardon-Shende)

If X 2n is Weinstein, the index n co-cores C1, · · · ,Ck generate W(X ).

I Generate: any Lagrangian is isomorphic to a twisted complex
(iterated cone) of co-cores, i.e. W(X ) = Tw (C1, · · · ,Ck)

I Question: which twisted complexes are isomorphic to an
embedded exact Lagrangian?
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Cotangent bundles

I Focus on T ∗Sn
std ; most results hold for more general domains.

I Morse function on Sn with two critical points of index 0, n
=⇒ Weinstein structure on T ∗Sn with 2 handles of index 0, n,
i.e. T ∗Sn

std = B2n
std ∪ Hn

Λu
, Λu is Legendrian unknot.

I One index n handle with co-core T ∗
q S

n

=⇒W(T ∗Sn) ∼= Tw T ∗
q S

n ∼= Tw C−∗(ΩSn).
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Closed Lagrangians

I Λu has a Lagrangian disk filling Dn
u ⊂ B2n

std and zero-section
Sn ⊂ T ∗Sn is union of Dn

u and core of Hn
Λ0

Theorem (Fukaya-Seidel-Smith, Nadler-Zaslow, Kragh,
Abouzaid)

Any closed exact Lagrangian L ⊂ T ∗Sn is homotopy equivalent to Sn

=⇒ any Lagrangian filling of Λu is homotopy equivalent to Dn.
I More generally, if T ∗Sn = B2n

std ∪ Hn
Λ is another presentation

with different Λ, any filling of Λ is homotopy equivalent to Dn.
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Exotic presentations

Theorem (L.)

If n ≥ 3, exist infinitely many different Legendrian spheres
Λn−1

k ⊂ ∂B2n
std so that B2n

std ∪ Hn
Λk

is Weinstein homotopic to T ∗Sn
std .

None are exact Lagrangian fillable.

I False for n = 2: if B4
std ∪ H2

Λ = T ∗S2
std , then Λ is the

Legendrian unknot, i.e. all presentations are standard.

I Algebraic version: there are many different objects that
generates W(T ∗Sn) besides T ∗

q S
n.

I Equivalently: Λk have different Chekanov-Eliashberg algebras
but are derived Morita equivalent.

Oleg Lazarev Western Hemisphere Virtual Symplectic Seminar Weinstein geometry of cotangent bundles



Weinstein domains
Geometric and algebraic flexibility
Subdomains of cotangent bundles

Exotic presentations

Theorem (L.)

If n ≥ 3, exist infinitely many different Legendrian spheres
Λn−1

k ⊂ ∂B2n
std so that B2n

std ∪ Hn
Λk

is Weinstein homotopic to T ∗Sn
std .

None are exact Lagrangian fillable.

I False for n = 2: if B4
std ∪ H2

Λ = T ∗S2
std , then Λ is the

Legendrian unknot, i.e. all presentations are standard.

I Algebraic version: there are many different objects that
generates W(T ∗Sn) besides T ∗

q S
n.

I Equivalently: Λk have different Chekanov-Eliashberg algebras
but are derived Morita equivalent.

Oleg Lazarev Western Hemisphere Virtual Symplectic Seminar Weinstein geometry of cotangent bundles



Weinstein domains
Geometric and algebraic flexibility
Subdomains of cotangent bundles

Exotic subdomains

Theorem (L. with Sylvan)

If n ≥ 5, for any finite collection of primes P (possibly containing 0),
there is a Weinstein subdomain T ∗Sn

P ⊂ T ∗Sn so that

1) W(T ∗Sn
P) ∼=W(T ∗Sn)[ 1

P ]

2) T ∗Sn
P is a Weinstein subdomain of T ∗Sn

Q if and only if Q ⊂ P.

3) T ∗Sn
P are all diffeomorphic to T ∗Sn

So T ∗Sn ) T ∗Sn
2 ) T ∗Sn

2,3 ) T ∗Sn
2,3,5 · · · ) T ∗Sn

0 = T ∗Sn
flex

I W(T ∗Sn
P ;Fq) ∼= 0 if q ∈ P

=⇒ T ∗Sn
P has no (smooth) closed exact Lagrangians.

I Abouzaid-Seidel: there is an abstract Weinstein domain XP so
that SH(XP) ∼= SH(T ∗Sn)[ 1

P ]. Conjecturally XP = T ∗Sn
P . We

show T ∗Sn
P are nested subdomains of T ∗Sn.
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Classifying subdomains

Theorem (L. with Sylvan)

Any Weinstein subdomain X of T ∗Sn satisfies
W(X ) ∼=W(T ∗Sn)[ 1

P ] for some unique collection of primes P.

I Theorem holds only for cotangent bundles; even T ∗M\T ∗N has
subdomains T ∗M and T ∗N that are not prime localizations.

I In process, classify which twisted complexes in W(T ∗Sn) are
isomorphic to exact Lagrangian disks.
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Flexible Weinstein domains

I Flexible Weinstein domain: all index n handles have
Legendrian attaching spheres that are loose, i.e. zig-zag

I Ex: flexible cotangent bundle T ∗Sn
flex , has W(T ∗Sn

flex ) ∼= 0

I Ex: subcritical domain with all handles of index less than n

Theorem (Cieliebak-Eliashberg, Murphy)

Let n ≥ 3. If flexible Weinstein structures W0,W1 are homotopic
through smooth handle moves (+framing), they are homotopic
through Weinstein handle moves.
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Flexible subdomains

I If n ≥ 3 and X 2n is Weinstein with index n co-cores C1, · · · ,Ck ,
then X\C1

∐
· · ·

∐
Ck has no index n handles, i.e. subcritical.

I Boundary connected sum: given two disjoint exact
Lagrangians D1,D2 and isotropic arc from ∂D1 to ∂D2, can
form boundary connected sum D1\D2, new exact Lagrangian.

Theorem (L.)

If n ≥ 3 and X 2n is Weinstein with index n co-cores C1, · · · ,Ck ,
then X\C1\ · · · \Ck is a flexible domain.

I Equivalently: there is a flexible subdomain Vflex ⊂ X 2n so that
X 2n = Vflex ∪ Hn

Λ and co-core of Hn
Λ is C1\ · · · \Ck .
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Weinstein presentations with few handles

I There is a flexible subdomain V 2n
flex ⊂ X 2n so that

X 2n = V 2n
flex ∪ Hn

Λ.

I For Vflex , Weinstein handle moves are the same as smooth
handle moves.

Corollary (L.)

If n ≥ 3, X 2n has a Weinstein presentation with at most two more
Weinstein handles than the minimum number of smooth handles.

I Result is sharp: sometimes need two more Weinstein handles
than smooth handles.

I Unknown if true in dimension n = 2.
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Proof of Theorem

I Theorem: if X 2n, n ≥ 3, has two co-cores C1,C2, then
X 2n\C1\C2 is flexible.

I Need to realize C1\C2 as co-core of some presentation.

I Idea: handleslides change co-cores by boundary connected sum.

I Proposition (L.): C1 = C1 and C2 = C1\C2.

I So when remove C2 = C1\C2, have just Hn
Λ1

, which is loose.
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Weinstein homotopy of T ∗Sn
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Exotic presentations for T ∗Sn

I Exists Λ3 ⊂ ∂B2n
std so that B2n

std ∪ Hn
Λ3

= T ∗Sn and co-core of

Hn
Λ3

is CΛ3 := TqS
n\T ∗

q1
Sn\T ∗

q2
Sn

=⇒ Λ3 not isotopic to Λu and not exact fillable.

I T ∗
q S

n\T ∗
q1
Sn\T ∗

q2
Sn ∼= T ∗

q S
n ⊕ T ∗

q1
Sn[1]⊕ T ∗

q2
Sn generates

W(T ∗Sn)

I For any category and object A, have A⊕ A⊕ A[1] generates A:

Cone(A⊕ A⊕ A[1]
π23→ A⊕ A⊕ A[1]) ∼= A⊕ A[1]

Cone(A⊕ A⊕ A[1]
π23→ A⊕ A[1]) ∼= A
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Cone(A⊕ A⊕ A[1]
π23→ A⊕ A[1]) ∼= A
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Algebraic flexibility

I Geometric flexibility: If X 2n, n ≥ 3, has co-cores C1, · · · ,Ck

and C1\ · · · \Ck generates Hn(X ;Z), then X 2n has a
presentation with a single co-core C1\ · · · \Ck

=⇒ C1\ · · · \Ck
∼= C1 ⊕ · · · ⊕ Ck generates W(X ).

I Algebraic flexibility: Let C be an arbitrary triangulated
category.

Theorem (Thomason)

If A1, · · · ,Ak are generators of C and A1 ⊕ · · · ⊕ Ak generate the
Grothendieck group K0(C), then A1 ⊕ · · · ⊕ Ak generate C.
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Grothendieck group

I How to link geometric and algebraic flexibility?

Theorem (L.)

If X 2n is Weinstein, there is a surjective homomorphism
Hn(X ;Z)→ K0(W(X )) taking a n-cocycle to any Poincaré dual
Lagrangian representative.

I If [L1] ≡ [L2] ∈ Hn(X ;Z), then [L1] ≡ [L2] ∈ K0(W(X )).

I True for any n.

I Proof idea: index n − 1 handles give relations in Hn(X ;Z) and
also in W(X 2n) (acyclic twisted complexes)
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Subdomains of Weinstein domains

,

I Question: How to construct subdomains of X 2n?

I Idea: any Lagrangian disk Dn ⊂ X 2n is co-core of some handle
=⇒ remove handle to get subdomain X 2n\Dn ⊂ X

(for arbitrary disks, X\Dn is a Liouville subdomain)

Theorem (Ganatra-Pardon-Shende)

If X\D is Weinstein, then W(X\D) equivalent to W(X )/D,
localization of W(X ) by D.

I Hence to understand subdomains X ⊂ T ∗Sn suffices to
understand Lagrangian disks as objects of W(T ∗Sn).

I Question: What are Lagrangian disks Dn ⊂ T ∗Sn?
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Abouzaid-Seidel disks

,

I For any smooth codimension 0 U ⊂ Sn−1, Abouzaid-Seidel
constructed Lagrangian disk DU ⊂ T ∗Dn ⊂ T ∗Sn.

I CW (Sn,DU) ∼= C ∗(Dn,U) ∼= C̃ ∗−1(U), reduced Morse cochains
=⇒ DU

∼= C̃ ∗−1(U)⊗ T ∗
q S

n in W(T ∗Sn).

I Example: if n ≥ 5, exists Moore space Up ⊂ Sn−1 so that

C̃ ∗(U) = Z[−1]
p→ Z[−2]

=⇒ DU
∼= T ∗

q S
n[1]

p→ T ∗
q S

n = Cone(p · IdT∗
q Sn ).
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Constructing subdomains

I Set T ∗Sn
p1,··· ,pk

:= T ∗Sn\(Dp1

∐
· · ·

∐
Dpk

) + flexible handles

I By construction, T ∗Sn
P ⊂ T ∗Sn and T ∗Sn

P ⊂ T ∗Sn
Q if Q ⊂ P

I W(T ∗SP) ∼=W(T ∗Sn)/(Dp1 , · · · ,Dpk
)

I Killing Dp
∼= Cone(p · IdT∗

q Sn ) is same as making p · IdT∗
q Sn an

isomorphism, i.e. inverting p
=⇒W(T ∗SP) ∼=W(T ∗Sn)[ 1

P ]
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Classifying subdomains

I To classify subdomains X ⊂ T ∗Sn, suffices to classify
isomorphism classes of disks D ⊂ T ∗Sn in W(T ∗Sn).

Theorem (L. w/ Sylvan)

If π1(M) = H1(L) = H2(M) = 0 and i : L ↪→ T ∗M is a
null-homotopic Lagrangian embedding, then L is isomorphic to
CW (M, L)⊗ T ∗

qM in W(T ∗M).

I No higher morphisms in twisted complex for L
I Caution: Sn ⊂ T ∗Sn is isomorphic to T ∗

q S
n[n]

α→ T ∗
q S

n, where
α is the generator of CW 1−n(T ∗

q S
n,T ∗

q S
n) ∼= Cn−1(ΩSn) ∼= Z.

I Every chain complex over Z splits into Z[1]
k→ Z

=⇒ any null-homotopic L, e.g. disk D, is isomorphic to ⊕iDki

=⇒ any Weinstein subdomain X ⊂ T ∗Sn has
W(X ) ∼=W(T ∗Sn)/D ∼=W(T ∗Sn)/(⊕iDki

) ∼=W(T ∗Sn)[ 1
P ],

where P is set of primes dividing ki .
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Thank you!

Thank you!
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