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Symplectic manifolds and Weinstein domains

Rolling without slipping

I Consider a car in R2 with position x , y and angle θ with the
x-axis; configuration space is {(x , y , θ)} = R2 × S1

I If the car slips, its path (x(t), y(x), θ(t)) can be arbitrary; for
example (t, 0, π/4).
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Rolling without slipping, II

I If car rolls without slipping, then θ determines direction of
motion: dy

dx = tan(θ)

I So a path (x(t), y(t), θ(t)) is non-slipping if it is tangent to
hyperplane distribution ξ2 := ker(dy − tan(θ)dx) ⊂ TR2 × S1

I Question: can any path in R3 be C 0-approximated by the
motion of a non-slipping car?
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Formal/genuine functions

I Graph of function z(x) with its derivative: (x , dz
dx , z(x)) ⊂ R3

I Decouple derivative from the function and graph ‘formal
functions’ (x , y(x), z(x)) ⊂ R3

I (x , y(x), z(x)) ⊂ R3 is graph of ‘genuine’ function if dz
dx = y ,

i.e. tangent to the hyperplane distribution ξ2 := ker(dz − ydx)
I Example: replace ODE ( df

dx )2 + f (x)2 df
dx = x5 with algebraic

equation y2 + yz2 = x5; curves in this hypersurface tangent to
ξ are solutions to the ODE

I Question: can any formal function approximated by a
genuine function?
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Contact distribution

The contact distribution ξ and submanifolds tangent to it are the
key objects.

Figure: The contact distribution ξstd = ker(dz − ydx) ⊂ TR3, image due
to Patrick Massot
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Contact geometry

I Definition: a contact structure ξ on a manifold Y 2n+1 is a
hyperplane distribution ξ2n = ker(α) for a 1-form α with
α ∧ (dα)n 6= 0, maximally non-integrable

I Examples: 1-jet space J1(M) = T ∗M × R, (S2n−1, ξstd )

I The (universal cover of the) previous two examples are
contactomorphic: exists a diffeomorphism
φ : (M, ξM)→ (N, ξN) such that φ∗ξN = ξM

I Definition: Λk ⊂ (Y 2n+1, ξ) is isotropic if TΛ ⊂ ξ
I Non-slipping car and graph of a genuine function are isotropics

I Basic but important linear algebra fact: if Λk ⊂ (Y 2n+1, ξ)
is isotropic, then k ≤ n (called Legendrian if k = n).
Intuition: contact distribution is maximally non-integrable.

Oleg Lazarev Michael Zhao Memorial Student Colloquium Flexibility in Contact and Symplectic Geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Contact geometry

I Definition: a contact structure ξ on a manifold Y 2n+1 is a
hyperplane distribution ξ2n = ker(α) for a 1-form α with
α ∧ (dα)n 6= 0, maximally non-integrable

I Examples: 1-jet space J1(M) = T ∗M × R, (S2n−1, ξstd )

I The (universal cover of the) previous two examples are
contactomorphic: exists a diffeomorphism
φ : (M, ξM)→ (N, ξN) such that φ∗ξN = ξM

I Definition: Λk ⊂ (Y 2n+1, ξ) is isotropic if TΛ ⊂ ξ
I Non-slipping car and graph of a genuine function are isotropics

I Basic but important linear algebra fact: if Λk ⊂ (Y 2n+1, ξ)
is isotropic, then k ≤ n (called Legendrian if k = n).
Intuition: contact distribution is maximally non-integrable.

Oleg Lazarev Michael Zhao Memorial Student Colloquium Flexibility in Contact and Symplectic Geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Contact geometry

I Definition: a contact structure ξ on a manifold Y 2n+1 is a
hyperplane distribution ξ2n = ker(α) for a 1-form α with
α ∧ (dα)n 6= 0, maximally non-integrable

I Examples: 1-jet space J1(M) = T ∗M × R, (S2n−1, ξstd )

I The (universal cover of the) previous two examples are
contactomorphic: exists a diffeomorphism
φ : (M, ξM)→ (N, ξN) such that φ∗ξN = ξM

I Definition: Λk ⊂ (Y 2n+1, ξ) is isotropic if TΛ ⊂ ξ
I Non-slipping car and graph of a genuine function are isotropics

I Basic but important linear algebra fact: if Λk ⊂ (Y 2n+1, ξ)
is isotropic, then k ≤ n (called Legendrian if k = n).
Intuition: contact distribution is maximally non-integrable.

Oleg Lazarev Michael Zhao Memorial Student Colloquium Flexibility in Contact and Symplectic Geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Contact geometry

I Definition: a contact structure ξ on a manifold Y 2n+1 is a
hyperplane distribution ξ2n = ker(α) for a 1-form α with
α ∧ (dα)n 6= 0, maximally non-integrable

I Examples: 1-jet space J1(M) = T ∗M × R, (S2n−1, ξstd )

I The (universal cover of the) previous two examples are
contactomorphic: exists a diffeomorphism
φ : (M, ξM)→ (N, ξN) such that φ∗ξN = ξM

I Definition: Λk ⊂ (Y 2n+1, ξ) is isotropic if TΛ ⊂ ξ

I Non-slipping car and graph of a genuine function are isotropics

I Basic but important linear algebra fact: if Λk ⊂ (Y 2n+1, ξ)
is isotropic, then k ≤ n (called Legendrian if k = n).
Intuition: contact distribution is maximally non-integrable.

Oleg Lazarev Michael Zhao Memorial Student Colloquium Flexibility in Contact and Symplectic Geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Contact geometry

I Definition: a contact structure ξ on a manifold Y 2n+1 is a
hyperplane distribution ξ2n = ker(α) for a 1-form α with
α ∧ (dα)n 6= 0, maximally non-integrable

I Examples: 1-jet space J1(M) = T ∗M × R, (S2n−1, ξstd )

I The (universal cover of the) previous two examples are
contactomorphic: exists a diffeomorphism
φ : (M, ξM)→ (N, ξN) such that φ∗ξN = ξM

I Definition: Λk ⊂ (Y 2n+1, ξ) is isotropic if TΛ ⊂ ξ
I Non-slipping car and graph of a genuine function are isotropics

I Basic but important linear algebra fact: if Λk ⊂ (Y 2n+1, ξ)
is isotropic, then k ≤ n (called Legendrian if k = n).
Intuition: contact distribution is maximally non-integrable.

Oleg Lazarev Michael Zhao Memorial Student Colloquium Flexibility in Contact and Symplectic Geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Contact geometry

I Definition: a contact structure ξ on a manifold Y 2n+1 is a
hyperplane distribution ξ2n = ker(α) for a 1-form α with
α ∧ (dα)n 6= 0, maximally non-integrable

I Examples: 1-jet space J1(M) = T ∗M × R, (S2n−1, ξstd )

I The (universal cover of the) previous two examples are
contactomorphic: exists a diffeomorphism
φ : (M, ξM)→ (N, ξN) such that φ∗ξN = ξM

I Definition: Λk ⊂ (Y 2n+1, ξ) is isotropic if TΛ ⊂ ξ
I Non-slipping car and graph of a genuine function are isotropics

I Basic but important linear algebra fact: if Λk ⊂ (Y 2n+1, ξ)
is isotropic, then k ≤ n (called Legendrian if k = n).
Intuition: contact distribution is maximally non-integrable.

Oleg Lazarev Michael Zhao Memorial Student Colloquium Flexibility in Contact and Symplectic Geometry



Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Classical flexibility results

I Flexibility = topological phenomenon in contact geometry

I Darboux’s theorem: any contact manifold is locally
contactomorphic to (R2n+1, ξstandard = dz −

∑n
i=1 yidxi )

I So no local invariants, unlike Riemannian geometry!

I Gray stability theorem: if (Y , ξt) is isotopy of contact
structures on a closed manifold Y , then all contactomorphic,
i.e. exists diffeotopy φt of Y such that φ∗t ξt = ξ0

I So deformation invariant, unlike complex geometry!

I Weinstein neighborhood theorem: any Legendrian
Λn ⊂ (Y 2n+1, ξ) has a neighborhood that is contactomorphic
to neighborhood of Λ in J1(Λ)
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Partial Differential Relations

I Many geometric problems given by a PDE, e.g. existence of
contact structure, contactomorphism, isotropic embedding

I Necessary algebraic condition: there is a solution to the
formal problem given by decoupling the PDE

I Definition: A formal contact structure is a 1-form α and a
non-degenerate 2-form ω on kerα (but ω 6= dα )

I Definition: A formal isotropic embedding is smooth
embedding of Lk and a homotopy E k

t of k-planes in TY 2n+1

over L such that E0 = TL and E1 ⊂ ξ (but Et 6= TL )

I Consider i : Solutions ↪→ FormalSolutions; h-principle holds
when i is a (weak) homotopy equivalence, i.e. geometric
problem reduces to algebraic topology

I Question: does h-principle hold for contact structures or
isotropic submanifolds?
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Rigidity in contact geometry

I There are non-local, deformation stable invariants of contact
manifolds, Legendrians called contact homology and
Legendrian contact homology, Gromov-Witten type invariant
defined using J-holomorphic curves. Related to wrapped
Fukaya category, mirror symmetry...

I Many Legendrian knots in (R3, ξstd ) are formally isotopic but
not Legendrian isotopic, distinguished by Legendrian contact
homology

Figure: Chekanov Legendrians in R2
xz ; images due to John Etnyre
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not Legendrian isotopic, distinguished by Legendrian contact
homology

Figure: Chekanov Legendrians in R2
xz ; images due to John Etnyre
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Rigidity in contact geometry, II

I Similarly, many contact structures are formally
contactomorphic but not contactomorphic

Figure: Standard and overtwisted structures; images due to Patrick
Massot

I h-principle fails for contact manifolds, isotropic submanifolds!
i∗ is not injective on π0; for Legendrian knots, i∗ is not
surjective on π0

I Question: what is the boundary between rigidity and
flexibility?
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Flexibility for isotropics

I Gromov’s h-principle for subcritical isotropics: two
formally isotopic Λk

1 ,Λ
k
2 ⊂ (Y 2n+1, ξ) with k < n are

genuinely isotopic

I h-principle fails for general Legendrians (k = n) by LCH

I Definition: a Legendrian Λn ⊂ Y 2n+1 is loose if n ≥ 2 and it
has a ‘zig-zag’ in its xz-projection

Figure: Loose chart, i.e. zig-zag, pictured in R2
xz and in R2

xy
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Loose Legendrians

I Murphy’s h-principle for loose Legendrians: formally
isotopic loose Legendrians are Legendrian isotopic; any smooth
embedding can be C 0-approximated by a loose Legendrian.

Figure: Approximating slipping path (t, 0, π/4) by non-slipping path

I LCH vanishes for loose Legendrians! Existence of (local)
zig-zag kills all symplectic geometry!

I Open problem: If Λ has vanishing LCH, is it loose?
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Loose Legendrians, II

Loose Chekanov knots (in high-dimensions) are Legendrian isotopic
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Symplectic manifolds

I Definition a symplectic structure ω on a manifold M2n is a
closed, non-degenerate 2-form ω; get [ω] ∈ H2(M;R) and
[ω]n 6= 0 if M closed manifold

I Examples: Kahler manifolds, (R2n,
∑n

i=1 dxi ∧ dyi ),T
∗M

I Definition: a formal symplectic structure is a non-degenerate
2-form and a class [a] ∈ H2(M;R) (with [a]n 6= 0 if M closed)

I Let i : Symplectic(M2n) ↪→ FormalSymplectic(M), M closed.

I Taubes: i∗ not surjective in dimension 4 by Seiberg-Witten =
Gromov-Witten: CP2]CP2]CP2 has no symplectic structure

I McDuff: i∗ not injective in dimensions > 4 by GW invariants

I Open problems: Is i∗ injective on π0 in dimension 4? Is i∗
surjective on π0 in dimensions > 4?
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Weinstein domains

I An exact symplectic manifold (M2n, dα) has contact
boundary if (∂M, kerα) is a contact manifold

I Example: (B2n, αstandard = 1
2 (
∑n

i=1 xidyi − yidxi ))

I Weinstein: can attach a handle to an isotropic sphere
Λk−1 ⊂ ∂M2n and get a new symplectic manifold with
contact boundary M2n ∪ Hk

Λ

Figure: Weinstein handle attachment
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Weinstein domains, II

I Definition: a Weinstein domain W 2n is iterated Weinstein
handle attachment to (B2n, ωstandard ), i.e. symplectic
handlebody

I W 2n is homotopy equivalent to n-dimensional CW complex

I Andreotti-Frankel: affine varieties V 2n have Weinstein
structure, so homotopy equivalent to n-dimensional complex

I Example: T ∗Sn = B2n ∪ Hn
Λunknot
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Rigidity for Weinstein domains

I Definition: M2n has a formal Weinstein structure if it has a
non-degenerate 2-form and is homotopy equivalent to an
n-dimensional CW complex

I McLean: infinitely many different formally symplectomorphic
Weinstein structures on B2n, n ≥ 4 (distinguished by
symplectic homology)

Figure: Sketch of an exotic Weinstein ball
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Flexibility for Weinstein domains

I Definition: a Weinstein domain W 2n, n ≥ 3 is flexible if all
n-handles are attached along loose Legendrians

Figure: T ∗Sn and T ∗Sn
flex

I Cieliebak-Eliashberg: A formal Weinstein manifold
W 2n, n ≥ 3, has a genuine Weinstein structure. Two formally
symplectomorphic flexible structures are symplectomorphic

I Question: can this result be used to construct symplectic
structures on closed manifolds?
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Modifying Weinstein presentations

I Can modify Weinstein presentation by doing handle-slides and
create/cancel handles; easy to create more handles

Figure: Handle-slides and handle cancellation/creation

I WCrit(W ) : = minimum number of Weinstein handles for W
Crit(W ) : = minimum number of smooth handles

I WCrit(M) ≥ Crit(M) ≥ rank H∗(M;Z)
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Modifying Weinstein presentations, II

I Smale’s h-cobordism theorem: if dimM ≥ 5, π1(M) = 0,
then Crit(M) = rank H∗(M;Z); key is Whitney trick

I Cieliebak-Eliashberg: WCrit(Wflex ) = Crit(W )

I McLean: exist W with WCrit(W ) ≥ Crit(W ) + 2; Whitney
trick fails!

I L. any Weinstein W 2n, n ≥ 3, has WCrit(W ) ≤ Crit(W ) + 2

I Implies restrictions on J-holomorphic curve invariants: there is
no Weinstein structure on the ball B2n whose wrapped Fukaya
category is that of T ∗Sn

std , i.e. modules over C∗(ΩSn)

I Question: what is the interaction between symplectic
flexibility and rigidity?
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