Flexibility in Contact and Symplectic Geometry

Oleg Lazarev Michael Zhao Memorial Student Colloquium

February 13, 2019

(人間) (人) (人) (人) (人)

Oleg Lazarev Michael Zhao Memorial Student Colloquium Flexibility in Contact and Symplectic Geometry

Rolling without slipping

イロト イヨト イヨト イヨト

Э

Rolling without slipping

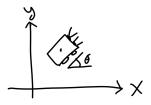
Consider a car in ℝ² with position x, y and angle θ with the x-axis; configuration space is {(x, y, θ)} = ℝ² × S¹

イロト イポト イヨト イヨト

Э

Rolling without slipping

Consider a car in R² with position x, y and angle θ with the x-axis; configuration space is {(x, y, θ)} = R² × S¹



Rolling without slipping

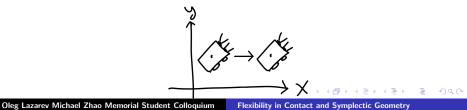
Consider a car in ℝ² with position x, y and angle θ with the x-axis; configuration space is {(x, y, θ)} = ℝ² × S¹

If the car slips, its path (x(t), y(x), θ(t)) can be arbitrary; for example (t, 0, π/4).

Rolling without slipping

Consider a car in ℝ² with position x, y and angle θ with the x-axis; configuration space is {(x, y, θ)} = ℝ² × S¹

If the car slips, its path (x(t), y(x), θ(t)) can be arbitrary; for example (t, 0, π/4).



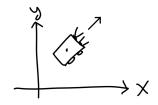
Rolling without slipping, II

 If car rolls without slipping, then θ determines direction of motion: dy/dx = tan(θ)

イロン イヨン イヨン イヨン

Rolling without slipping, II

 If car rolls without slipping, then θ determines direction of motion: dy/dx = tan(θ)

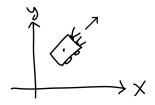


イロト イヨト イヨト イヨト

臣

Rolling without slipping, II

 If car rolls without slipping, then θ determines direction of motion: dy/dx = tan(θ)

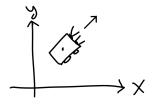


So a path (x(t), y(t), θ(t)) is non-slipping if it is tangent to hyperplane distribution ξ² := ker(dy − tan(θ)dx) ⊂ Tℝ² × S¹

イロト イポト イヨト イヨト

Rolling without slipping, II

 If car rolls without slipping, then θ determines direction of motion: dy/dx = tan(θ)



So a path (x(t), y(t), θ(t)) is non-slipping if it is tangent to hyperplane distribution ξ² := ker(dy − tan(θ)dx) ⊂ Tℝ² × S¹

イロト イポト イヨト イヨト

► Question: can any path in R³ be C⁰-approximated by the motion of a non-slipping car?

Formal/genuine functions

• Graph of function z(x) with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3$

(1日) (1日) (日)

크

Formal/genuine functions

- Graph of function z(x) with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3$
- Decouple derivative from the function and graph 'formal functions' (x, y(x), z(x)) ⊂ ℝ³

イロト イポト イヨト イヨト

Э

Formal/genuine functions

- Graph of function z(x) with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3$
- ▶ Decouple derivative from the function and graph 'formal functions' $(x, y(x), z(x)) \subset \mathbb{R}^3$

・ 同 ト ・ ヨ ト ・ ヨ ト

Formal/genuine functions

- Graph of function z(x) with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3$
- ▶ Decouple derivative from the function and graph 'formal functions' $(x, y(x), z(x)) \subset \mathbb{R}^3$

• $(x, y(x), z(x)) \subset \mathbb{R}^3$ is graph of 'genuine' function if $\frac{dz}{dx} = y$, i.e. tangent to the hyperplane distribution $\xi^2 := \ker(dz - ydx)$

(4月) トイヨト イヨト

Formal/genuine functions

- Graph of function z(x) with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3$
- ▶ Decouple derivative from the function and graph 'formal functions' $(x, y(x), z(x)) \subset \mathbb{R}^3$

(x, y(x), z(x)) ⊂ ℝ³ is graph of 'genuine' function if dz/dx = y, i.e. tangent to the hyperplane distribution ξ² := ker(dz - ydx)
 Example: replace ODE (df/dx)² + f(x)² df/dx = x⁵ with algebraic equation y² + yz² = x⁵; curves in this hypersurface tangent to ξ are solutions to the ODE

イロト イポト イヨト イヨト

Formal/genuine functions

- Graph of function z(x) with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3$
- ▶ Decouple derivative from the function and graph 'formal functions' $(x, y(x), z(x)) \subset \mathbb{R}^3$

- $(x, y(x), z(x)) \subset \mathbb{R}^3$ is graph of 'genuine' function if $\frac{dz}{dx} = y$, i.e. tangent to the hyperplane distribution $\xi^2 := \ker(dz - ydx)$
- **Example:** replace ODE $(\frac{df}{dx})^2 + f(x)^2 \frac{df}{dx} = x^5$ with algebraic equation $y^2 + yz^2 = x^5$; curves in this hypersurface tangent to ξ are solutions to the ODE
- Question: can any formal function approximated by a genuine function?

Contact distribution

The contact distribution ξ and submanifolds tangent to it are the key objects.

イロト イヨト イヨト イヨト

臣

Contact distribution

The contact distribution ξ and submanifolds tangent to it are the key objects.

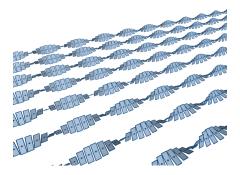


Figure: The contact distribution $\xi_{std} = \ker(dz - ydx) \subset T\mathbb{R}^3$, image due to Patrick Massot

・ 同 ト ・ ヨ ト ・ ヨ ト

Contact geometry

Definition: a contact structure ξ on a manifold Y²ⁿ⁺¹ is a hyperplane distribution ξ²ⁿ = ker(α) for a 1-form α with α ∧ (dα)ⁿ ≠ 0, maximally non-integrable

イロト イポト イヨト イヨト

Э

Contact geometry

- Definition: a contact structure ξ on a manifold Y²ⁿ⁺¹ is a hyperplane distribution ξ²ⁿ = ker(α) for a 1-form α with α ∧ (dα)ⁿ ≠ 0, maximally non-integrable
- **Examples:** 1-jet space $J^1(M) = T^*M \times \mathbb{R}$, (S^{2n-1}, ξ_{std})

イロト イポト イヨト イヨト

Contact geometry

- Definition: a contact structure ξ on a manifold Y²ⁿ⁺¹ is a hyperplane distribution ξ²ⁿ = ker(α) for a 1-form α with α ∧ (dα)ⁿ ≠ 0, maximally non-integrable
- **Examples:** 1-jet space $J^1(M) = T^*M \times \mathbb{R}$, (S^{2n-1}, ξ_{std})
- The (universal cover of the) previous two examples are contactomorphic: exists a diffeomorphism
 φ : (M, ξ_M) → (N, ξ_N) such that φ^{*}ξ_N = ξ_M

イロト イポト イヨト イヨト

Contact geometry

- Definition: a contact structure ξ on a manifold Y²ⁿ⁺¹ is a hyperplane distribution ξ²ⁿ = ker(α) for a 1-form α with α ∧ (dα)ⁿ ≠ 0, maximally non-integrable
- **Examples:** 1-jet space $J^1(M) = T^*M \times \mathbb{R}$, (S^{2n-1}, ξ_{std})
- The (universal cover of the) previous two examples are contactomorphic: exists a diffeomorphism
 φ : (M, ξ_M) → (N, ξ_N) such that φ^{*}ξ_N = ξ_M
- **Definition:** $\Lambda^k \subset (Y^{2n+1}, \xi)$ is *isotropic* if $T\Lambda \subset \xi$

イロト イポト イヨト イヨト 二日

Contact geometry

- Definition: a contact structure ξ on a manifold Y²ⁿ⁺¹ is a hyperplane distribution ξ²ⁿ = ker(α) for a 1-form α with α ∧ (dα)ⁿ ≠ 0, maximally non-integrable
- Examples: 1-jet space $J^1(M) = T^*M \times \mathbb{R}$, (S^{2n-1}, ξ_{std})
- The (universal cover of the) previous two examples are contactomorphic: exists a diffeomorphism
 φ : (M, ξ_M) → (N, ξ_N) such that φ^{*}ξ_N = ξ_M
- **Definition:** $\Lambda^k \subset (Y^{2n+1}, \xi)$ is *isotropic* if $T\Lambda \subset \xi$
- Non-slipping car and graph of a genuine function are isotropics

Contact geometry

- Definition: a contact structure ξ on a manifold Y²ⁿ⁺¹ is a hyperplane distribution ξ²ⁿ = ker(α) for a 1-form α with α ∧ (dα)ⁿ ≠ 0, maximally non-integrable
- Examples: 1-jet space $J^1(M) = T^*M \times \mathbb{R}$, (S^{2n-1}, ξ_{std})
- The (universal cover of the) previous two examples are contactomorphic: exists a diffeomorphism
 φ : (M, ξ_M) → (N, ξ_N) such that φ^{*}ξ_N = ξ_M
- ▶ **Definition:** $\Lambda^k \subset (Y^{2n+1}, \xi)$ is *isotropic* if $T\Lambda \subset \xi$
- Non-slipping car and graph of a genuine function are isotropics
- Basic but important linear algebra fact: if Λ^k ⊂ (Y²ⁿ⁺¹, ξ) is isotropic, then k ≤ n (called Legendrian if k = n). Intuition: contact distribution is maximally non-integrable.

イロト イポト イヨト イヨト

Classical flexibility results

Flexibility = topological phenomenon in contact geometry

イロト イヨト イヨト イヨト

臣

Classical flexibility results

- Flexibility = topological phenomenon in contact geometry
- ► **Darboux's theorem:** any contact manifold is locally contactomorphic to $(\mathbb{R}^{2n+1}, \xi_{standard} = dz \sum_{i=1}^{n} y_i dx_i)$

イロト イポト イヨト イヨト

Classical flexibility results

- Flexibility = topological phenomenon in contact geometry
- ► **Darboux's theorem:** any contact manifold is locally contactomorphic to $(\mathbb{R}^{2n+1}, \xi_{standard} = dz \sum_{i=1}^{n} y_i dx_i)$
- So no local invariants, unlike Riemannian geometry!

イロト イポト イヨト イヨト

Classical flexibility results

- Flexibility = topological phenomenon in contact geometry
- ► **Darboux's theorem:** any contact manifold is locally contactomorphic to $(\mathbb{R}^{2n+1}, \xi_{standard} = dz \sum_{i=1}^{n} y_i dx_i)$
- So no local invariants, unlike Riemannian geometry!
- Gray stability theorem: if (Y, ξ_t) is isotopy of contact structures on a closed manifold Y, then all contactomorphic, i.e. exists diffeotopy φ_t of Y such that φ^{*}_tξ_t = ξ₀

イロト イポト イヨト イヨト

Classical flexibility results

- Flexibility = topological phenomenon in contact geometry
- ► **Darboux's theorem:** any contact manifold is locally contactomorphic to $(\mathbb{R}^{2n+1}, \xi_{standard} = dz \sum_{i=1}^{n} y_i dx_i)$
- So no local invariants, unlike Riemannian geometry!
- Gray stability theorem: if (Y, ξ_t) is isotopy of contact structures on a closed manifold Y, then all contactomorphic, i.e. exists diffeotopy φ_t of Y such that φ^{*}_tξ_t = ξ₀
- So deformation invariant, unlike complex geometry!

Classical flexibility results

- Flexibility = topological phenomenon in contact geometry
- ► **Darboux's theorem:** any contact manifold is locally contactomorphic to $(\mathbb{R}^{2n+1}, \xi_{standard} = dz \sum_{i=1}^{n} y_i dx_i)$
- So no local invariants, unlike Riemannian geometry!
- Gray stability theorem: if (Y, ξ_t) is isotopy of contact structures on a closed manifold Y, then all contactomorphic, i.e. exists diffeotopy φ_t of Y such that φ^{*}_tξ_t = ξ₀
- So deformation invariant, unlike complex geometry!
- Weinstein neighborhood theorem: any Legendrian Λⁿ ⊂ (Y²ⁿ⁺¹, ξ) has a neighborhood that is contactomorphic to neighborhood of Λ in J¹(Λ)

イロト イポト イヨト イヨト

Partial Differential Relations

Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding

(1) マン・ション・

Partial Differential Relations

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the formal problem given by decoupling the PDE

・ 同 ト ・ ヨ ト ・ ヨ ト

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the formal problem given by decoupling the PDE
- Definition: A formal contact structure is a 1-form α and a non-degenerate 2-form ω on ker α (but ω ≠ dα)

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the formal problem given by decoupling the PDE
- Definition: A formal contact structure is a 1-form α and a non-degenerate 2-form ω on ker α (but ω ≠ dα)
- Definition: A formal isotropic embedding is smooth embedding of L^k and a homotopy E^k_t of k-planes in TY²ⁿ⁺¹ over L such that E₀ = TL and E₁ ⊂ ξ (but E_t ≠ TL)

イロト イヨト イヨト イヨト

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the formal problem given by decoupling the PDE
- Definition: A formal contact structure is a 1-form α and a non-degenerate 2-form ω on ker α (but ω ≠ dα)
- Definition: A formal isotropic embedding is smooth embedding of L^k and a homotopy E^k_t of k-planes in TY²ⁿ⁺¹ over L such that E₀ = TL and E₁ ⊂ ξ (but E_t ≠ TL)
- Consider i : Solutions → FormalSolutions; h-principle holds when i is a (weak) homotopy equivalence, i.e. geometric problem reduces to algebraic topology

イロト イヨト イヨト イヨト

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the formal problem given by decoupling the PDE
- Definition: A formal contact structure is a 1-form α and a non-degenerate 2-form ω on ker α (but ω ≠ dα)
- Definition: A formal isotropic embedding is smooth embedding of L^k and a homotopy E^k_t of k-planes in TY²ⁿ⁺¹ over L such that E₀ = TL and E₁ ⊂ ξ (but E_t ≠ TL)
- Consider i : Solutions → FormalSolutions; h-principle holds when i is a (weak) homotopy equivalence, i.e. geometric problem reduces to algebraic topology
- Question: does h-principle hold for contact structures or isotropic submanifolds?

Rigidity in contact geometry

There are non-local, deformation stable invariants of contact manifolds, Legendrians called *contact homology* and *Legendrian contact homology*, Gromov-Witten type invariant defined using J-holomorphic curves. Related to wrapped Fukaya category, mirror symmetry...

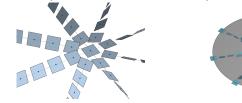
Rigidity in contact geometry

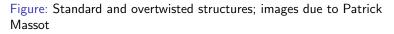
- There are non-local, deformation stable invariants of contact manifolds, Legendrians called *contact homology* and *Legendrian contact homology*, Gromov-Witten type invariant defined using J-holomorphic curves. Related to wrapped Fukaya category, mirror symmetry...
- Many Legendrian knots in (R³, ξ_{std}) are formally isotopic but not Legendrian isotopic, distinguished by Legendrian contact homology

Figure: Chekanov Legendrians in \mathbb{R}^2_{xz} ; images due to John Etnyre

Rigidity in contact geometry, II

 Similarly, many contact structures are formally contactomorphic but not contactomorphic





- h-principle fails for contact manifolds, isotropic submanifolds!
 *i*_{*} is not injective on π₀; for Legendrian knots, *i*_{*} is not surjective on π₀
- Question: what is the boundary between rigidity and flexibility?

Oleg Lazarev Michael Zhao Memorial Student Colloquium

Flexibility for isotropics

Gromov's h-principle for subcritical isotropics: two formally isotopic Λ^k₁, Λ^k₂ ⊂ (Y²ⁿ⁺¹, ξ) with k < n are genuinely isotopic

イロト イポト イヨト イヨト

Э

Flexibility for isotropics

- Gromov's h-principle for subcritical isotropics: two formally isotopic Λ^k₁, Λ^k₂ ⊂ (Y²ⁿ⁺¹, ξ) with k < n are genuinely isotopic
- h-principle fails for general Legendrians (k = n) by LCH

イロト イポト イヨト イヨト

Flexibility for isotropics

- Gromov's h-principle for subcritical isotropics: two formally isotopic Λ^k₁, Λ^k₂ ⊂ (Y²ⁿ⁺¹, ξ) with k < n are genuinely isotopic
- h-principle fails for general Legendrians (k = n) by LCH
- ▶ Definition: a Legendrian Λⁿ ⊂ Y²ⁿ⁺¹ is *loose* if n ≥ 2 and it has a 'zig-zag' in its xz-projection

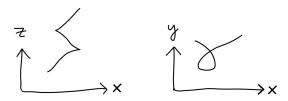


Figure: Loose chart, i.e. zig-zag, pictured in \mathbb{R}^2_{xz} and in \mathbb{R}^2_{xy}

ヘロト ヘヨト ヘヨト

Loose Legendrians

Murphy's h-principle for loose Legendrians: formally isotopic loose Legendrians are Legendrian isotopic; any smooth embedding can be C⁰-approximated by a loose Legendrian.

イロト イポト イヨト イヨト

Э

Loose Legendrians

Murphy's h-principle for loose Legendrians: formally isotopic loose Legendrians are Legendrian isotopic; any smooth embedding can be C⁰-approximated by a loose Legendrian.

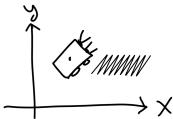


Figure: Approximating slipping path $(t, 0, \pi/4)$ by non-slipping path

Loose Legendrians

Murphy's h-principle for loose Legendrians: formally isotopic loose Legendrians are Legendrian isotopic; any smooth embedding can be C⁰-approximated by a loose Legendrian.

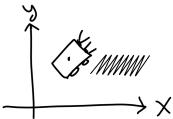


Figure: Approximating slipping path $(t, 0, \pi/4)$ by non-slipping path

< ロ > < 同 > < 三 > < 三 >

LCH vanishes for loose Legendrians! Existence of (local) zig-zag kills all symplectic geometry!

Loose Legendrians

Murphy's h-principle for loose Legendrians: formally isotopic loose Legendrians are Legendrian isotopic; any smooth embedding can be C⁰-approximated by a loose Legendrian.

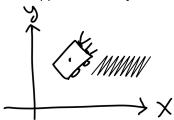


Figure: Approximating slipping path $(t, 0, \pi/4)$ by non-slipping path

- LCH vanishes for loose Legendrians! Existence of (local) zig-zag kills all symplectic geometry!
- **Open problem:** If Λ has vanishing LCH, is it loose?

Loose Legendrians, II

Loose Chekanov knots (in high-dimensions) are Legendrian isotopic

イロト イポト イヨト イヨト

Symplectic manifolds

Definition a symplectic structure ω on a manifold M²ⁿ is a closed, non-degenerate 2-form ω; get [ω] ∈ H²(M; ℝ) and [ω]ⁿ ≠ 0 if M closed manifold

イロト イポト イヨト イヨト

Symplectic manifolds

Definition a symplectic structure ω on a manifold M²ⁿ is a closed, non-degenerate 2-form ω; get [ω] ∈ H²(M; ℝ) and [ω]ⁿ ≠ 0 if M closed manifold

Examples: Kahler manifolds, $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i), T^*M$

イロト イポト イヨト イヨト

Symplectic manifolds

- Definition a symplectic structure ω on a manifold M²ⁿ is a closed, non-degenerate 2-form ω; get [ω] ∈ H²(M; ℝ) and [ω]ⁿ ≠ 0 if M closed manifold
- **Examples:** Kahler manifolds, $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i), T^*M$
- Definition: a formal symplectic structure is a non-degenerate 2-form and a class [a] ∈ H²(M; ℝ) (with [a]ⁿ ≠ 0 if M closed)

イロト イポト イヨト イヨト

Symplectic manifolds

- Definition a symplectic structure ω on a manifold M²ⁿ is a closed, non-degenerate 2-form ω; get [ω] ∈ H²(M; ℝ) and [ω]ⁿ ≠ 0 if M closed manifold
- **Examples:** Kahler manifolds, $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i), T^*M$
- Definition: a formal symplectic structure is a non-degenerate 2-form and a class [a] ∈ H²(M; ℝ) (with [a]ⁿ ≠ 0 if M closed)
- Let $i : Symplectic(M^{2n}) \hookrightarrow FormalSymplectic(M), M$ closed.

Symplectic manifolds

- Definition a symplectic structure ω on a manifold M²ⁿ is a closed, non-degenerate 2-form ω; get [ω] ∈ H²(M; ℝ) and [ω]ⁿ ≠ 0 if M closed manifold
- **Examples:** Kahler manifolds, $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i), T^*M$
- Definition: a formal symplectic structure is a non-degenerate 2-form and a class [a] ∈ H²(M; ℝ) (with [a]ⁿ ≠ 0 if M closed)
- Let $i : Symplectic(M^{2n}) \hookrightarrow FormalSymplectic(M), M$ closed.
- ► Taubes: i_{*} not surjective in dimension 4 by Seiberg-Witten = Gromov-Witten: CP² #CP² #CP² has no symplectic structure

イロト イポト イヨト イヨト

Symplectic manifolds

- Definition a symplectic structure ω on a manifold M²ⁿ is a closed, non-degenerate 2-form ω; get [ω] ∈ H²(M; ℝ) and [ω]ⁿ ≠ 0 if M closed manifold
- **Examples:** Kahler manifolds, $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i), T^*M$
- Definition: a formal symplectic structure is a non-degenerate 2-form and a class [a] ∈ H²(M; ℝ) (with [a]ⁿ ≠ 0 if M closed)
- Let $i : Symplectic(M^{2n}) \hookrightarrow FormalSymplectic(M), M$ closed.
- ► Taubes: i_{*} not surjective in dimension 4 by Seiberg-Witten = Gromov-Witten: CP² #CP² #CP² has no symplectic structure
- ▶ **McDuff:** *i*_{*} not injective in dimensions > 4 by GW invariants

イロト イポト イヨト イヨト

Symplectic manifolds

- Definition a symplectic structure ω on a manifold M²ⁿ is a closed, non-degenerate 2-form ω; get [ω] ∈ H²(M; ℝ) and [ω]ⁿ ≠ 0 if M closed manifold
- **Examples:** Kahler manifolds, $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i), T^*M$
- Definition: a formal symplectic structure is a non-degenerate 2-form and a class [a] ∈ H²(M; ℝ) (with [a]ⁿ ≠ 0 if M closed)
- Let $i : Symplectic(M^{2n}) \hookrightarrow FormalSymplectic(M), M$ closed.
- ► Taubes: i_{*} not surjective in dimension 4 by Seiberg-Witten = Gromov-Witten: CP² #CP² #CP² has no symplectic structure
- **McDuff:** i_* not injective in dimensions > 4 by GW invariants

3

Open problems: Is *i*_{*} injective on π₀ in dimension 4? Is *i*_{*} surjective on π₀ in dimensions > 4?

Weinstein domains

An exact symplectic manifold (M²ⁿ, dα) has contact boundary if (∂M, ker α) is a contact manifold

イロト イポト イヨト イヨト

Э

Weinstein domains

An exact symplectic manifold (M²ⁿ, dα) has contact boundary if (∂M, ker α) is a contact manifold

• **Example:** $(B^{2n}, \alpha_{standard} = \frac{1}{2} (\sum_{i=1}^{n} x_i dy_i - y_i dx_i))$

イロト イポト イヨト イヨト

Weinstein domains

An exact symplectic manifold (M²ⁿ, dα) has contact boundary if (∂M, ker α) is a contact manifold

• **Example:** $(B^{2n}, \alpha_{standard} = \frac{1}{2} (\sum_{i=1}^{n} x_i dy_i - y_i dx_i))$

• Weinstein: can attach a handle to an isotropic sphere $\Lambda^{k-1} \subset \partial M^{2n}$ and get a new symplectic manifold with contact boundary $M^{2n} \cup H^k_{\Lambda}$

イロト イポト イヨト イヨト

Weinstein domains

An exact symplectic manifold (M²ⁿ, dα) has contact boundary if (∂M, ker α) is a contact manifold

• **Example:** $(B^{2n}, \alpha_{standard} = \frac{1}{2} (\sum_{i=1}^{n} x_i dy_i - y_i dx_i))$

• Weinstein: can attach a handle to an isotropic sphere $\Lambda^{k-1} \subset \partial M^{2n}$ and get a new symplectic manifold with contact boundary $M^{2n} \cup H^k_{\Lambda}$

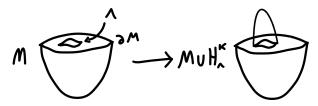


Figure: Weinstein handle attachment

イロト イポト イヨト イヨト

Weinstein domains, II

▶ Definition: a Weinstein domain W²ⁿ is iterated Weinstein handle attachment to (B²ⁿ, ω_{standard}), i.e. symplectic handlebody

Э

Weinstein domains, II

- ▶ Definition: a Weinstein domain W²ⁿ is iterated Weinstein handle attachment to (B²ⁿ, ω_{standard}), i.e. symplectic handlebody
- W^{2n} is homotopy equivalent to *n*-dimensional CW complex

Weinstein domains, II

- ▶ Definition: a Weinstein domain W²ⁿ is iterated Weinstein handle attachment to (B²ⁿ, ω_{standard}), i.e. symplectic handlebody
- W^{2n} is homotopy equivalent to *n*-dimensional CW complex
- Andreotti-Frankel: affine varieties V²ⁿ have Weinstein structure, so homotopy equivalent to n-dimensional complex

イロト イポト イヨト イヨト

Weinstein domains, II

- ▶ Definition: a Weinstein domain W²ⁿ is iterated Weinstein handle attachment to (B²ⁿ, ω_{standard}), i.e. symplectic handlebody
- W^{2n} is homotopy equivalent to *n*-dimensional CW complex
- Andreotti-Frankel: affine varieties V²ⁿ have Weinstein structure, so homotopy equivalent to n-dimensional complex

• Example:
$$T^*S^n = B^{2n} \cup H^n_{\Lambda_{unknot}}$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

Rigidity for Weinstein domains

Definition: M²ⁿ has a formal Weinstein structure if it has a non-degenerate 2-form and is homotopy equivalent to an *n*-dimensional CW complex

Rigidity for Weinstein domains

- Definition: M²ⁿ has a formal Weinstein structure if it has a non-degenerate 2-form and is homotopy equivalent to an *n*-dimensional CW complex
- ► McLean: infinitely many different formally symplectomorphic Weinstein structures on B²ⁿ, n ≥ 4 (distinguished by symplectic homology)

Rigidity for Weinstein domains

- Definition: M²ⁿ has a formal Weinstein structure if it has a non-degenerate 2-form and is homotopy equivalent to an *n*-dimensional CW complex
- ► McLean: infinitely many different formally symplectomorphic Weinstein structures on B²ⁿ, n ≥ 4 (distinguished by symplectic homology)

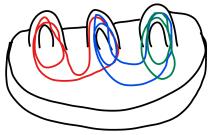


Figure: Sketch of an exotic Weinstein ball

Flexibility for Weinstein domains

▶ Definition: a Weinstein domain W²ⁿ, n ≥ 3 is flexible if all n-handles are attached along loose Legendrians

Э

Flexibility for Weinstein domains

▶ Definition: a Weinstein domain W²ⁿ, n ≥ 3 is flexible if all n-handles are attached along loose Legendrians

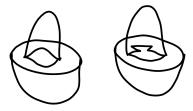


Figure: T^*S^n and $T^*S^n_{flex}$

Flexibility for Weinstein domains

▶ Definition: a Weinstein domain W²ⁿ, n ≥ 3 is flexible if all n-handles are attached along loose Legendrians

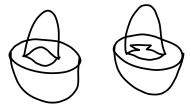


Figure: T^*S^n and $T^*S^n_{flex}$

► Cieliebak-Eliashberg: A formal Weinstein manifold W²ⁿ, n ≥ 3, has a genuine Weinstein structure. Two formally symplectomorphic flexible structures are symplectomorphic

< ロ > < 同 > < 三 > < 三 >

Flexibility for Weinstein domains

▶ Definition: a Weinstein domain W²ⁿ, n ≥ 3 is flexible if all n-handles are attached along loose Legendrians

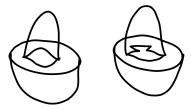


Figure: T^*S^n and $T^*S^n_{flex}$

- ► Cieliebak-Eliashberg: A formal Weinstein manifold W²ⁿ, n ≥ 3, has a genuine Weinstein structure. Two formally symplectomorphic flexible structures are symplectomorphic
- Question: can this result be used to construct symplectic structures on closed manifolds?

Oleg Lazarev Michael Zhao Memorial Student Colloquium

Modifying Weinstein presentations

 Can modify Weinstein presentation by doing handle-slides and create/cancel handles; easy to create more handles

・ 同 ト ・ ヨ ト ・ ヨ ト

Modifying Weinstein presentations

 Can modify Weinstein presentation by doing handle-slides and create/cancel handles; easy to create more handles

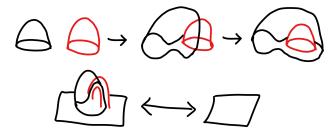


Figure: Handle-slides and handle cancellation/creation

・ 同 ト ・ 三 ト ・ 三 ト

Modifying Weinstein presentations

 Can modify Weinstein presentation by doing handle-slides and create/cancel handles; easy to create more handles

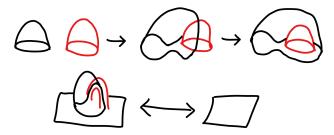


Figure: Handle-slides and handle cancellation/creation

WCrit(W) := minimum number of Weinstein handles for W Crit(W) := minimum number of smooth handles

< ロ > < 同 > < 三 > < 三 >

Modifying Weinstein presentations

 Can modify Weinstein presentation by doing handle-slides and create/cancel handles; easy to create more handles

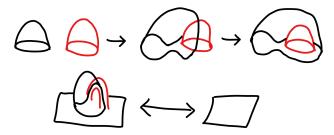


Figure: Handle-slides and handle cancellation/creation

 WCrit(W) := minimum number of Weinstein handles for W Crit(W) := minimum number of smooth handles
 WCrit(M) ≥ Crit(M) ≥ rank H*(M; Z)

Modifying Weinstein presentations, II

Smale's h-cobordism theorem: if dim $M \ge 5$, $\pi_1(M) = 0$, then $Crit(M) = \text{rank } H^*(M; \mathbb{Z})$; key is Whitney trick

イロト イポト イヨト イヨト

Modifying Weinstein presentations, II

Smale's h-cobordism theorem: if dim M ≥ 5, π₁(M) = 0, then Crit(M) = rank H*(M; Z); key is Whitney trick

• Cieliebak-Eliashberg: $WCrit(W_{flex}) = Crit(W)$

イロト イポト イヨト イヨト

Modifying Weinstein presentations, II

- Smale's h-cobordism theorem: if dim M ≥ 5, π₁(M) = 0, then Crit(M) = rank H*(M; Z); key is Whitney trick
- Cieliebak-Eliashberg: $WCrit(W_{flex}) = Crit(W)$
- ► McLean: exist W with WCrit(W) ≥ Crit(W) + 2; Whitney trick fails!

Modifying Weinstein presentations, II

- Smale's h-cobordism theorem: if dim M ≥ 5, π₁(M) = 0, then Crit(M) = rank H*(M; Z); key is Whitney trick
- Cieliebak-Eliashberg: $WCrit(W_{flex}) = Crit(W)$
- ► McLean: exist W with WCrit(W) ≥ Crit(W) + 2; Whitney trick fails!
- ▶ L. any Weinstein W^{2n} , $n \ge 3$, has $WCrit(W) \le Crit(W) + 2$

イロト イポト イヨト イヨト 二日

Modifying Weinstein presentations, II

Smale's h-cobordism theorem: if dim M ≥ 5, π₁(M) = 0, then Crit(M) = rank H*(M; Z); key is Whitney trick

• Cieliebak-Eliashberg: $WCrit(W_{flex}) = Crit(W)$

- ► McLean: exist W with WCrit(W) ≥ Crit(W) + 2; Whitney trick fails!
- ▶ L. any Weinstein W^{2n} , $n \ge 3$, has $WCrit(W) \le Crit(W) + 2$
- Implies restrictions on J-holomorphic curve invariants: there is no Weinstein structure on the ball B²ⁿ whose wrapped Fukaya category is that of T^{*}Sⁿ_{std}, i.e. modules over C_{*}(ΩSⁿ)

Modifying Weinstein presentations, II

- Smale's h-cobordism theorem: if dim M ≥ 5, π₁(M) = 0, then Crit(M) = rank H*(M; Z); key is Whitney trick
- Cieliebak-Eliashberg: $WCrit(W_{flex}) = Crit(W)$
- ► McLean: exist W with WCrit(W) ≥ Crit(W) + 2; Whitney trick fails!
- ▶ L. any Weinstein W^{2n} , $n \ge 3$, has $WCrit(W) \le Crit(W) + 2$
- Implies restrictions on J-holomorphic curve invariants: there is no Weinstein structure on the ball B²ⁿ whose wrapped Fukaya category is that of T^{*}Sⁿ_{std}, i.e. modules over C_{*}(ΩSⁿ)

Question: what is the interaction between symplectic flexibility and rigidity?