Homework 15
(due December 1)
Math 130 Kovitz 2016

1. Explain the following apparent error in the sin function.

The equation

\[\sin \left(\frac{\pi}{6} \right) \approx \sin \left(\frac{3.141592654}{6} \right) \approx \sin .523598776 \approx .5 \]

is true.

But (.523598776, .5) is not a point on the unit circle since

\[(.523598776)^2 + (.5)^2 \approx .274155678 + .25 = .524155678 \neq 1, \]

meaning that

\[u^2 + v^2 \neq 1 \]

and that the point (.523598776, .5) is not on the unit circle.

The above statement is also true. In fact the only first-quadrant point on the unit circle for which \(v = .5 \) is (.866025404, .5) (approximately).

\textit{How could } \sin(.523598776) \approx .5 \textit{ when the point (.523598776, .5) is not even approximately on the unit circle.} \textit{Explain. (Hint: ask yourself — of what is the unit circle a graph?)}

2. (a) Graph \(\sin x \) and \(\cos x \), for \(x \) between 0 and \(2\pi \), on the same axes.

Where do they intersect? Label the two points.

(b) Using the unit circle \((u, v) = (\cos s, \sin s)\), find the points where

\[\sin s = \cos s, \text{ for } 0 \leq s \leq 2\pi. \]

Label them.

(c) Show that the answers in parts (a) and (b) are exactly the same. Explain briefly.

\textbf{TURN OVER}
3. By using a graph of the unit circle draw the points that have the property that \(\cos s = \frac{1}{2} \).

 (a) By looking at the graph, roughly estimate \(s \) for each such point. (Is there more than one answer to this question for each point?)

 (b) By looking at the graph, roughly estimate the value of \(\sin s \) for each such point.

 (c) It is surely true that \(\sin s \) is a function—that means that \(\sin s \) cannot have more than one value for a given \(s \).

 Explain the apparent contradiction to that fact by the two points which have the property that \(\cos s = \frac{1}{2} \) but have different sines.

 Also explain the apparent contradiction to \(\cos s \) being a function by the fact that there are two values of \(s \) which make \(\cos s = \frac{1}{2} \) true.

 (d) By using a graph of \(\cos x \), locate some points which have the property that \(\cos x = \frac{1}{2} \). By looking at the graph, roughly estimate \(x \) for at least four of those points.

4. (a) Find the period

 i. \(\cos(7x) \)
 ii. \(\sin(\frac{x}{2}) \)
 iii. \(\cos(2\pi x) \)
 iv. \(\cos(\frac{2\pi x}{3}) \)

 (b) Match to the correct graph

 i. \(\cos(\frac{2\pi x}{3}) \)
 ii. \(\sin(4x) \)

5. By translation, graph \(y = \sin(x - \frac{\pi}{3}) \) for \(0 \leq x \leq 2\pi \). Label with coordinates all intercepts and the peak and the valley.