Inverse Function Practice Problem 1
Math 130 Kovitz

Let \(f(x) = \frac{4x - 5}{x - 4} \)

1. Find \(f^{-1}(x) \)

2. Find
 (a) \(f(2) \)
 (b) \(f^{-1}(2) \)

3. Find
 (a) \(f^{-1}(f(2)) \)
 (b) \(f(f^{-1}(2)) \)

4. True or false: \(f \) is its own inverse
 (i.e. \(f \) is symmetric with respect to the line \(y = x \)).

5. Take any point on \(f(x) \). Reflect it across the line \(y = x \).
 Is the resulting point on \(f \)?
 Is the resulting point on \(f^{-1} \)?

ANSWERS FOLLOW
Answers.

1. $f^{-1}(x) = \frac{4x - 5}{x - 4}$.

2. (a) $f(2) = -3/2$.
 (b) $f^{-1}(2) = -3/2$.

3. (a) 2.
 (b) 2.

4. True.

5. An example would be choosing the point $(5, 15)$. Its reflection across the line $y = x$ is the point $(15, 5)$.
 The resulting point $(15, 5)$ is on f since $5 = \frac{4(15) - 5}{15 - 4}$ because $5 = \frac{55}{11}$.
 Since f and f^{-1} are the same function the point is certainly on f^{-1}.