More Trig Problems
Math 130 Kovitz

1. Evaluate using a sum or difference identity
 (a) \(\cos 165^\circ \)
 (b) \(\sin(x + \frac{\pi}{4}) \)
 (c) \(\sin(x + 3.01) \)

2. Simplify \(\sin 37^\circ \cos 8^\circ + \cos 37^\circ \sin 8^\circ \).

3. Express \(\cos(x + 2) - \cos(x - 2) \) in terms of \(\sin x \) and/or \(\cos x \), and simplify.

4. Assume that \(x \) satisfies \(\frac{\pi}{2} < x < \pi \) and that \(\sin x = \frac{2}{3} \).
 (a) Find \(\sin 2x \).
 (b) Find \(\cos 2x \).
 (c) Find \(\sin \frac{1}{2}x \).
 (d) Find \(\cos \frac{1}{2}x \).
 (e) Sketch \(x, 2x, \) and \(\frac{1}{2}x \) on the unit circle.

5. Given that \(\cos 132.843643^\circ \approx -0.68 \), approximate \(\cos 66.4218215^\circ \) without resorting to the use of trig tables or a calculator.

6. Find all solutions with \(0 \leq x \leq 2\pi \) for \(\sin x = \frac{1}{2} \).

7. (a) Find all solutions with \(0 \leq x \leq 2\pi \) for \(\sin 2x = \cos x \).

 (b) Graph \(\sin 2x \) and \(\cos x \) on the same axes and indicate on your sketch the points corresponding to the solutions in part (a).

8. (a) Graph \(y = \arccos x \). Plot five points, labeling them with their coordinates, both in decimal form and in terms of radicals and \(\pi \).
 For example: \((.866025403, .523598) = (\frac{\sqrt{3}}{2}, \frac{\pi}{6}) \).

 (b) Plot the points where
 i. \(x = 0 \)
 ii. \(x = -\frac{1}{2} \)
 iii. \(x = \frac{\sqrt{3}}{2} \)
 iv. \(x = -.530511337 \)
 v. \(x = .367013401 \)
 vi. \(y = .367013401 \)

 (c) By drawing on the same axes the line \(y = -x \), determine how many points on the previous graph, \(y = \arccos x \), have \(-x = y \) (that is: how many \(x \) have \(-x = \arccos x \)).

9. Simplify
 (a) \(\cos(\arccos(-.74)) \)
 (b) \(\arcsin(\sin 2.4) \)
10. Find an angle between 0° and 180°, that is between 0 and π radians, whose cosine is equal to (giving the angle in both radians and degrees):

(a) .322265695
(b) -.833885822
(c) -.275637355
(d) -.416146837

11. A triangle has sides of lengths 5, 16, and 19 feet. Find the angle in radian measure between the two shorter sides.

12. A triangle has sides of lengths 4, 9, and 11 feet. Find the angle in radian measure between the two shorter sides.

13. Use the Law of Cosines to find side c if side $a = 15$, side $b = 7$, and angle $C = 1.047197551$ radians.

14. Find $\angle A$.

\[
\begin{array}{c}
A \\
\end{array}
\begin{array}{c}
_ _ \\
\end{array}
\begin{array}{c}
B \\
\end{array}
\begin{array}{c}
C \\
\end{array}
\begin{array}{c}
b = 3 \\
\end{array}
\begin{array}{c}
c = 5 \\
\end{array}
\begin{array}{c}
a = 6 \\
\end{array}
\end{array}
\]