Perform these steps repeatedly in order until you are done with each step.

- 1. Simplify by combining like terms; then write in descending order.
- 2. Factor out the greatest common monomial factor.
- 3. Difference of two squares.
- 4. Difference of two like odd powers: $a^5-b^5 = (a-b)(a^4+a^3b+a^2b^2+ab^3+b^4)$
- 5. Sum of two like odd powers: $a^{5}+b^{5} = (a+b)(a^{4}-a^{3}b+a^{2}b^{2}-ab^{3}+b^{4})$
- 6. Trinomial: ax²+bx+c = (maybe) (dx+e)(fx+g)
 - a. If needed, factor out a (-1) so that the term of highest degree is positive.
 - b. If **c** is **positive** then e and g both have the **same sign**.
 - i. Then, if b is positive, e and g are both positive.
 - ii. Or, if b is negative, e and g are both negative.
 - c. If c is negative, then e and g have opposite signs.
 - d. Write all possible factor pairs of a; these are possible values of d and f.
 - e. Write all possible factor pairs of c; these are possible values of e and g.
 - f. Try all possible combinations of (dx+e)(fx+g). If they fail, there is no factorization over the integers.
 - g. Use Dr. L's divisibility trick. If you already did step (2) completely, then it is not possible for d and e to have a common factor; and it is not possible for f and g to have a common factor. This is true because any common factor of (say) d and e would also be a factor of every term of the original trinomial. This way, you can sometimes reject candidate factors.
 - h. To shortcut your work, use the discriminant $\Delta = b^2$ -4ac of the trinomial. The trinomial factors over the integers iff Δ is a (positive) perfect square.
- 7. Further work on trinomials: You can solve the equation ax²+bx+c =0 by using the quadratic formula. If r1 and r2 are the roots of that equation, then (x-r1) and (y-r2) are factors [but you might have to multiply these factors by some integers to get the correct answer!
- 8. #7 is a special case of the Factor Theorem: if P(x) is any polynomial in x, then:
 - a. (x-r) is a factor of P(x) iff P(r) = 0.
 - b. A corollary of the Factor Theorem is the Rational Root theorem.
- 9. Special Products and Grouping. Examples of these are omitted here.

Factoring a polynomial in two variables:

- 10. ax²+bxy +cy² may be factored as follows:
 - a. Set y=1. Then factor ax^2+bx+c (if possible) as (dx+e)(fx+g).
 - b. Then the factors of ax²+bxy +cy² factors as: (dx+ey)(fx+gy).
 - c. **Example:** $4x^2+4xy+y^2$. Then $4x^2+4x+1 = (2x+1)(2x+1)$. So, $4x^2+4xy+y^2 = (2x+y)(2x+y)$.

Factoring a polynomial (of higher degree) over **R** or the **C**:

11. Sketch the polynomial, picking points wisely. Find the critical points if possible. Use the fundamental theorem of algebra. And, if the polynomial is positive at $x=x_1$ and negative at $x=x_2$, then it must take the value zero somewhere between x_1 and x_2 . As you find factors, use polynomial long division to reduce the degree of the polynomial.

Directions: Factor completely over the rational numbers. Check by multiplying! If the expression cannot be factored, write "prime". Do these problems in your HW book. Copy answers here.

	Problem	Work	Answer
1	x ² -9	Difference of 2 squares	(x-3)(x+3)
2	4x ² -25	Difference of 2 squares	(2x-5)(2x+5)
3	49-9x ²	Difference of 2 squares	(7-3x)(7+3x)
4	1-169x ²	Difference of 2 squares	(1-13x)(1+13x)
5	3x ³ -27x	CMF, Difference of 2 squares; 3x(x ² -9)	(3x)(x+3)(x-3)
6	5x ⁴ -625x	CMF; 5x(x ³ -125); Difference of 2 cubes	$5x(x-5)(x^2+5x+25)$
7	$(x+7)^2-16$	Difference of 2 squares. ((x+7)-4)((x+7)+4)	(x+3)(x+11)
8	x ⁵ -32x	CMF: x(x ⁴ -32)	x(x ⁴ -32)
9	x ² +12	Trinomial; $\Delta = b^2 - 4ac = (0)^2 - 4(1)(12) = -48$	prime
10	x ² -11	Trinomial; $\Delta = b^2 - 4ac = (0)^2 - 4(1)(-11) = 44$	prime
11	x ² -3x+6-2x	Simplify to x^2 -5x+6; trinomial.	(x-2)(x-3)
12	x ² -9x+20	Trinomial.	(x-5)(x-4)
13	6w ² -7w-20	Trinomial. $\Delta = b^2 - 4ac = (-7)^2 - 4(6)(-20) =$	(3w+4)(2w-5)
		49+480=529=23 ² ; Factors.	
14	5wx ² -110wx+605w	CMF: 5w(x ² -22x+121).2 nd factor is a square.	$5w(x-11)^2$
15	x ³ +y ³	Sum of 2 cubes.	$(x+y)(x^2-xy+y^2)$
16	x ³ -8	Difference of 2 cubes x ³ -2 ³	$(x-2)(x^2+2x+4)$
17	5x ⁶ y ⁶ -625x ³ y ³	CMF: $5x^{3}y^{3}(x^{3}y^{3}-125)$. Second factor is a	5x ³ y ³ (xy-5)
		difference of 2 cubes ((xy) ³ -5 ³).	(x ² y ² +5xy+25)
18	x ² -5x+6	Trinomial	(x-3)(x-2)
19	6x ² +11x-10	Trinomial. $\Delta = b^2 - 4ac = (11)^2 - 4(6)(-10) =$	(2x+5)(3x-2)
		121+240=361 =19 ² . Factors.	
20	x ² +x+3	Trinomial. $\Delta = b^2 - 4ac = (1)^2 - 4(1)(3) = -11.$	Prime
21	x ³ -49x ² -343x	CMF: $x(x^2-49x-343)$. $\Delta = b^2-4ac=(-49)^2-4(1)(-$	x(x ² -49x-343)
		343)=2401+1372=3773, not a square.	
22	8x ⁴ +64x	CMF: $8x(x^3+8)$. Sum of 2 cubes.	$8x(x+2)(x^2-2x+4)$
23	8x ⁴ +81x	CMF: x(8x ³ +81). 2 nd factor is prime.	x(8x ³ +81).
24	(2x+1) ² -3(2x+1)+2	p ² -3p+2 factors as (p-1)(p-2). Substitute	2x(2x-1)
	[Hint: let p = (2x+1)]	(2x+1) for p. ((2x+1)-1)((2x+1-2)	
25	6x ² -5x-6	Trinomial. $\Delta = b^2 - 4ac = (-5)^2 - 4(6)(-6)$	(3x+2)(2x-3)
		=25+144=169=13 ² . Factors.	
26	6x ² -7x-6	Trinomial. $\Delta = b^2 - 4ac = (-7)^2 - 4(6)(-6) =$	Prime.
		49+144=193=not a square. prime.	
27	5x ² -35x+65	CMF.Trinomial $\Delta = b^2 - 4ac = (-7)^2 - 4(1)(13) = -3$	5(x ² -7x+13)
28	w ⁹ -x ³	difference of 2 cubes = $(w^3)^3 - x^3$	$(w^3-x)(w^6+w^3x+x^2)$ (4x-y) ²
29	$16x^2 - 8xy + y^2$	Trinomial, perfect square	(4x-y) ²
30	x ⁶ -y ⁶	Diff. of 2 sqs= $(x^3-y^3)(x^3+y^3)$. Factors further.	$(x-y) (x^2+xy+y^2)$ $(x+y)(x^2-x+y^2)$
31	$x^4 - 3x^3 - x^2 + 3x = P(x).$	CMF x. P(3)=0. (x-3) is a factor. Divide. P(x)=	x(x-3)(x+1)(x-1)
	Hint: (x-3)	$x[x-3][x^2-1] =$	
32	$x^{4}-4x^{3}-x^{2}+16x-12$	Factor th. Try ±1,2,3,4,6,12.P(1)=0. P(2)=0.	(x-1)(x-2)(x-3)(x+2)
52			