Factoring a polynomial over the integers, in one variable:

Perform these steps repeatedly in order until you are done with each step.

- 1. Simplify by combining like terms; then write in descending order.
- 2. Factor out the greatest common monomial factor.
- 3. Difference of two squares.
- 4. Difference of two like odd powers: $a^5-b^5 = (a-b)(a^4+a^3b+a^2b^2+ab^3+b^4)$
- 5. Sum of two like odd powers: $a^7+b^7 = (a+b)(a^6-a^5b+a^4b^2-a^3b^3+a^2b^4-ab^5+b^6)$ FOR BOTH #4 and #5: if sign in first factor is +, signs in second factor alternate; else, all signs in 2^{nd} factor are +. The total degree of each term in the second factor is the same.
- 6. Trinomial: $ax^2+bx+c = (maybe) (dx+e)(fx+g)$
 - a. If needed, factor out a (-1) so that the term of highest degree is positive.
 - b. If **c** is positive then e and g both have the same sign.
 - i. Then, if b is positive, e and g are both positive.
 - ii. Or, if b is negative, e and g are both negative.
 - c. If c is negative, then e and g have opposite signs.
 - d. Write all possible factor pairs of a; these are possible values of d and f.
 - e. Write all possible factor pairs of c; these are possible values of e and g.
 - f. Try all possible combinations of (dx+e)(fx+g). If they fail, there is no factorization over the integers.
 - g. Use Dr. L's divisibility trick. If you already did step (2) completely, then it is not possible for d and e to have a common factor; and it is not possible for f and g to have a common factor. This is true because any common factor of (say) d and e would also be a factor of every term of the original trinomial. This way, you can sometimes reject candidate factors.
 - h. To shortcut your work, use the discriminant $\Delta = b^2$ -4ac of the trinomial. The trinomial factors over the integers iff Δ is a (positive) perfect square.
- 7. Further work on trinomials: You can solve the equation ax²+bx+c =0 by using the quadratic formula. If r1 and r2 are the roots of that equation, then (x-r1) and (y-r2) are factors [but you might have to multiply these factors by some integers to get the correct answer!
- 8. #7 is a special case of the Factor Theorem: if P(x) is any polynomial in x, then:
 - a. (x-r) is a factor of P(x) iff P(r) = 0.
 - b. A corollary of the Factor Theorem is the Rational Root theorem (not shown here).
- 9. Special Products and Grouping. Examples of these are omitted here.

Factoring a polynomial in two variables:

- 10. ax²+bxy +cy² may be factored as follows:
 - a. Set y=1. Then factor ax^2+bx+c (if possible) as (dx+e)(fx+g).
 - b. Then the factors of ax²+bxy +cy² factors as: (dx+ey)(fx+gy).
 - c. **Example:** $4x^2+4xy+y^2$. Then $4x^2+4x+1 = (2x+1)(2x+1)$. So, $4x^2+4xy+y^2 = (2x+y)(2x+y)$.

Factoring a polynomial (of higher degree) over R (reals) or C (complex numbers):

11. Sketch the polynomial, picking points wisely. Find the critical points if possible. Use the fundamental theorem of algebra. And, if the polynomial is positive at $x=x_1$ and negative at $x=x_2$, then it must take the value zero somewhere between x_1 and x_2 . As you find factors, use polynomial long division to reduce the degree of the polynomial.

Directions: Factor completely over the rational numbers. Check by multiplying! If the expression cannot be factored, write "prime". Do these problems in your HW book. Copy answers here.

	Problem	Work	Answer
1	x ² -9		
2	4x ² -25		
3	49-9x ²		
4	1-169x ²		
5	3x ³ -27x		
6	5x ⁴ -625x		
7	$(x+7)^2-16$		
8	x⁵-32x		
9	x ² +12		
10	x ² -11		
11	x ² -3x+6-2x		
12	x ² -9x+20		
	2		
13	6w ² -7w-20		
	2		
14	5wx ² -110wx+605w		
	3 3		
15	x ³ +y ³		
10	30		
16			
1/	5x°y° -625x°y°		
10	$v^2 \Gamma v = C$		
10	x - 5x + 6		
19	6x + 11x - 10		
20	x + x + 3		
21	x - 49x - 343x		
22	8x + 64x		
23	$\delta X + \delta I X$		
24	(2X+1) - 3(2X+1)+2		
25	$[\Pi \Pi \Pi I I I I I I I I I] = (2X+1)]$		
25	$6x^2 - 7x - 6$		
20	$5x^2 - 35x + 65$		
27	$w^9 - x^3$		
20	$16x^2 - 8xy + y^2$		
30	$x^6 - y^6$		
30	$x^{4}-3x^{3}-x^{2}+3x$		
	Hint: (x-3)		
32	$x^{4}-4x^{3}-x^{2}+16x-12$		
	Hint: factor theorem		