Number systems. Basic operations. Properties of number systems. Groups, rings, fields. Page 1 of 3 Corrected 7/14, 10:47 pm. Property #12 fixed. Thanks, Nour! Corrected 2/6/2015 +table for Z2. Thanks, Bryan.

Symbol	Name of number system	Definition	Comment	How to write the symbol
N	Natural numbers	(1,2,3,4,5,}	These are the counting numbers.	IN
W	Whole numbers	(0,1,2,3,4,5,}	The counting numbers, with zero thrown in.	W
Z	Integers	{, -3,-2,-1,0,1,2, }	"Z" is the first letter of the German word "Zähl", which means "number". German mathematicians Cantor, Dedekind and others studied the Integers.	Z
Q	Rational Numbers	{ $p/q \mid p \in Z$, and $q \in Z$, and $q \in Z$, and $q \neq 0$ }. That is, "the set of all fractions with integer numerator, integer denominator, and non-zero denominator.	"Q" stands for "Quotient". A quotient is the answer to a division problem.	Q
R	Real numbers	All numbers on the number line.	Don't confuse "Q" and "R" !!	IR
С	Complex numbers	{a + b I a \in R, and b \in R}. Here, the symbol "i" stands for the square root of "-1". All numbers of the form "a + b i", where "a" and "b" are real numbers, and where "i" represents the square root of "-1".		С

We will use these number systems in our work:

Number systems. Basic operations. Properties of number systems. Groups, rings, fields. Page 2 of 3 Corrected 7/14, 10:47 pm. Property #12 fixed. Thanks, Nour! Corrected 2/6/2015 +table for Z2. Thanks, Bryan.

There are four basic operations on numbers: Addition (+), Multiplication ($^{\cdot}$), Subtraction (-), and division (/ or $\frac{1}{2}$).

These are called the "FIELD PROPERTIES". The Rational numbers, Real numbers, and Complex numbers have these properties. The other number systems have SOME of these properties:

#	Property Name	Definition
1	Closure of	If x and y are in the number system, then "x plus y", written "x+y", is also in
	addition	the number system. x+y is unique.
2	Closure of	If x and y are in the number system, then "x times y", written "xy". Is also in
	multiplication	the number system. xy is unique.
3	Distributivity of	If x,y, and z are in the number system, then $x(y+z) = xy + xz$.
	multiplication	Note: This is the only property which connects addition and multiplication.
	over addition	
4	Commutativity of	If x and y are in the number system, then $x+y = y + x$.
	addition	
5	Commutativity of	If x and y are in the number system, then $xy = y x$.
	multiplication	
6	Associativity of	If x,y, and z are in the number system, then $(x+y)+z = x + (y + z)$.
	addition	
7	Associativity of	If x,y, and z are in the number system, then $(xy)z = x (y z)$.
	multiplication	
8	Additive identity	There is an element (called "zero" and written "0") such that:
	element	If x is in the number system, then $x+0 = x$, and $0 + x = x$.
9	Multiplicative	There is an element (called "one" and written "1") such that:
	identity element	If x is in the number system, then $x(1) = x$, and $1(x) = x$.
		For clarity: x times 1 equals x, and 1 times x equals x.
10	The number	0 ≠ 1.
	system is non-	For clarity: Zero is not equal to One.
	trivial.	Note: this property seems obvious, but we must have it here.
11	Existence of	If x is in the number system, then there is a number B, in the number system,
	additive inverses.	such that: $x + B = B + x = 0$. This number B is written "-x". The number (-x) is called THE ADDITIVE INVERSE of x .
12	Existence of	For clarity, $x + -x = 0$, and $-x + x = 0$. If x is any number EXCEPT ZERO in the number system, then there is a number
12	multiplicative	B, in the number system, such that: $xB = Bx = 1$. This number B is written
	inverses.	" $1/x$ " or " x^{-1} ". ($1/x$) is called THE MULTIPLICATIVE INVERSE of x .
	111001303.	For clarity, $x(1/x) = 1$, and $(1/x) x = 1$.
		ZERO DOES NOT HAVE A MULTIPLICATIVE INVERSE !!!
	1	ZENO DOES NOT HAVE A MOETIFLICATIVE INVERSE !!!

Definition: A number system that has **all** of these properties is called a **<u>Field</u>**.

Exercise: For the Natural numbers, the Whole numbers, and the Integers, which property or properties above are not true?

Number systems. Basic operations. Properties of number systems. Groups, rings, fields. Page **3** of **3** Corrected 7/14, 10:47 pm. Property #12 fixed. Thanks, Nour! Corrected 2/6/2015 +table for Z2. Thanks, Bryan.

Definition: a number system that has all of these properties except possibly #12, is called a **<u>Commutative Ring with Unity</u>**". An example is the ring of integers, **Z**. Any field is also a commutative rings with unity.

Definition: a **<u>Group</u>** is a number system with only ONE operation, that satisfies properties #2,7,9, and 12 above. The group operation here is multiplication. If also the group also satisfies property #5, then the group is called a <u>**Commutative Group**</u>. A group that is commutative can also be written with the operation "+" rather than "multiplication". In that case it is called an <u>**Additive Group**</u>, and it satisfies properties #1,4,6,8,11.

There are other fields besides **Q**, **R**, and **C**. Here is a simple example:

Z₂ is the field with two elements, named 0 and 1. The addition and multiplication tables for this field are given below:

Addit	Addition table for Z_2			Multiplication table for Z_2					
+	0	1				X	0	1]
0	0	1				0	0	0	
1	1	0				1	0	1	
This means: 0+0=0; 0+1=1; 1+0=1; 1+1=0.						means =0; 0x1	:: =0; 1x0=0; 1	1x1=1.	

Challenge problem: verify all the field properties for the field Z_2 .

Remark: In any field, all the elements of the field, with the single operation of addition, form an Additive Group. Furthermore, in any field, all of the NON-ZERO elements of the field, with the single operation of multiplication, form a commutative group.