Symbol	Name	Definition	Examples
\mathbb{N}	Natural Numbers	{1,2,3,4,}	5; 218
W	Whole Numbers	{0,1,2,3,4,}	0; 5; 218
Z	Integers	{,-2,-1,0,1,2,3,4,}	-3; 0; 5; 218
\mathbb{Q}	Rational Numbers	$a/b \mid a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0$	2 (= 2/1), ¾, -2/5
\mathbb{R}	Real Numbers	All numbers on the number line	
C	Complex Numbers	{a+bi $a \in \mathbb{R}$, $b \in \mathbb{R}$ }, with the definition that $i^2 = -1$.	3+2i; 6; 0; -3i.
ℤ /(2)	Integers modulo 2 ("the 2-clock")	{0,1} with the multiplication and addition tables given in class	
ℤ /(3)	Integers modulo 2 ("the 2-clock")	{0,1,2} with the multiplication and addition tables given in class	
ℤ /(4)	Integers modulo 2 ("the 2-clock")	{0,1,2,3} with the multiplication and addition tables given in class	
ℤ [X]	Polynomials over the Integers		3x ² -2x+7; 5; x ⁵
Q [X]	Polynomials over the Rationals		½ x ² - 9
R [X]	Polynomials over the Reals		π x3 -
C [X]	Polynomials over the Complex Numbers		i x ³ -3x

Algebra in number systems (corrected def. of \mathbb{Q} ; added exercise 7)

Remember: $\mathbb{N} \subset \mathbb{W} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

and $\mathbb{Z} \subset \mathbb{Z}[X] \subset \mathbb{Q}[X] \subset \mathbb{R}[X] \subset \mathbb{C}[X]$

Exercise 1. Develop addition and multiplication tables for \mathbb{Z} /(2).

0	
1	

x	0	1	
0			
1			

Exercise 2. Develop addition and multiplication tables for \mathbb{Z} /(3).

+	0	1	2	
0				
1				
2				

×	0	1	2	
_	0	-	2	
0				
1				
2				

Exercise 3. Develop addition and multiplication tables for \mathbb{Z} /(4).

+	0	1	2	3
0				
1				
2				
3				

×	0	1	2	3
0				
1				
2				
3				

Properties of some number systems.

System	\mathbb{N}	W	Z	Q	\mathbb{R}	C	ℤ /(2)	ℤ /(3)	ℤ /(4)	ℤ [X]	Any	Any
											Ring	field
Closure (+)	~	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Closure (x)	✓	✓	\checkmark	✓	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Closure			\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
(-)												
Closure (÷)				✓	✓	✓	✓	✓	✓			\checkmark
Associativity	\checkmark	\checkmark	✓	✓	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark	✓
(+)												
Associativity	\checkmark	\checkmark	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓
(×)												
Associativity							\checkmark					
(-)												
Associativity							\checkmark					
(÷)												
Commutativity	\checkmark	\checkmark	✓	✓	✓	✓	✓	✓	\checkmark	\checkmark	✓	✓
(+)												
Commutativity	✓	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
(×)												
Additive		✓	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Identity (0)												
Multiplicative	\checkmark	\checkmark	\checkmark	✓	✓	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark
Indentity(1)												
Additive			✓	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓
Inverses												
Multiplicative				✓	✓	✓	✓	✓				✓
Inverses												
0 ≠ 1		✓	✓	✓	✓	✓	✓	✓	✓	✓	\checkmark	✓
Unique	✓	✓	✓				\checkmark	✓		✓		
Factorization												

Exercise 4. Is \mathbb{Z} /(2) a Field? Why or why not?

Exercise 5. Is \mathbb{Z} /(3) a Field? Why or why not?

Exercise 6. Is $\mathbb{Z}/(4)$ a Field? Why or why not?

Exercise 7. For which whole numbers m>0 is $\mathbb{Z}/(m)$ a Field?