A quadratic function is a function of the form $y = ax^2 + bx + c$, where a,b, and c are real numbers.

Skill #1. Evaluating a quadratic function.

Example. $f(x) = 3x^2-4x-5$. Evaluate f(x) for x = -2/3.

Answer: $f(2/3) = 3(-2/3)^2 - 4(-2/3) - 5 = 3(4/9) - 4(-2/3) - 5 = 4/3 + 8/3 - 15/3 = -3/3 = -1$.

Skill #2. Calculating the discriminant.

A quadratic function has a discriminant $\Delta = b^2$ -4ac.

The discriminant of the function $f(x) = 3x^2-4x-5$ is calculated as follows.

First write down a,b, and c:

$$a = 3$$
 $b = -4$
 $c = -5$

Then write:

$$\Delta = b^{2}-4ac$$

$$= ()^{2}-4()()$$

$$= (-4)^{2}-4(3)(-5)$$

$$= 16+60=76.$$

Skill #3. Using the discriminant.

The discriminant Δ tells you several things.

- (a) If Δ is a perfect square integer ($\Delta = 0,1,4,9,16,25$, etc), then the quadratic polynomial factors over the integers.
- (b) If $\Delta > 0$, then the quadratic function has two different real roots.
- (c) If $\Delta = 0$, then the quadratic function has one real double root.
- (d) If $\Delta < 0$, then the quadratic function has no real roots, but it has two complex conjugate roots.

Example: the polynomial function $f(x) = 3x^2-4x-5$ has discriminant 76. Since 76 is not a perfect square, the polynomial cannot be factored over the integers. Since 76 > 0, the polynomial has two different real roots.

Skill #4. Does the parabola open up or down?

The graph of a quadratic function opens upwards (U) if the coefficient of x^2 is a positive number. The graph opens downwards (\cap) if the coefficient of x^2 is a negative number. Skill #5. Finding the x-coordinate of the vertex, and the line of symmetry.

The vertex of a parabola (or quadratic function) is the (x,y) point which is the highest or lowest point on the curve. The x-value of the vertex is half-way between the two roots, or the average of the two roots. It may be calculated directly by the formula x = -b/2a.

Example: the x-value of the vertex of the equation $f(x) = 3x^2-4x-5$ is x = -b/2a = -(-4)/(2(3)) = 4/6 = 2/3.

The line of symmetry of the parabola is the vertical line through the vertex.

Skill #6. Finding the y-coordinate of the vertex.

The y-coordinate of the vertex is found by evaluating f(x) at the x-coordinate of the vertex. In the above example, the y-coordinate of the vertex is f(-b/(2a)) = f(2/3) = -1. (see Skill #1 above).

Graphing quadr	atic function	ons.
----------------	---------------	------

Class/Section	Name	Date
	IVAITIC	Datc

Skill #7. Finding the roots.

Use factoring; but if the polynomial is not factorable, use the quadratic formula.

The QF (quadratic formula) for the roots of a quadratic function may be stated as follows:

If
$$ax^2+bx+c=0$$
, then $=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-b\pm\sqrt{\Delta}}{2a}$.

Before evaluating the QF, be sure to write the values of a,b,c (see skill #2).

Note: from this formula, you can see that -b/(2a) is the average of the roots. Further, the distance between the roots is $\pm \sqrt{\Delta}/a$, and the distance along the x axis from either root to the line of symmetry is $\sqrt{\Delta}/(2a)$.

Skill #8. Finding the y-intercept.

Find the y-intercept by evaluating the polynomial at x=0.

In our example $f(0) = 3(0)^2 - 4(0) - 5 = -5$. The y-intercept is at the point (0, -5).

Skill #9. Finding the symmetric point.

The symmetric point is at the same height as the y-intercept point. It is symmetric about the axis of symmetry to the y-intercept; so it is the same distance from the axis of symmetry as the y-intercept: (y-intercept) ------ axis ----- (symmetric point).

So the symmetric point is a distance 2(-b/2a) = -b/a from the y-axis.

Skill #10. Graphing the quadratic function.

When graphing, do all the above things in order.

Your sketch should show: (a) the roots; (b) the vertex; (c) the line of symmetry; (d) the y-intercept; (e) the symmetric point; and perhaps one or two other points.

Skill #11. Solving the quadratic by completing the square. [not discussed here].

Exercises. Graph the following quadratic functions. Calculate the roots, the vertex, and the discriminant. Find the y-intercept and the symmetric point. Show at least one or two other points on the graph.

	Equation	a	b	С	Δ	# of	vertex	y-	Symmetric	roots
					_	real	, 51.671	intercept	point	- 3 3 6 6
						roots		•		
1	$f(x) = x^2 - 6x + 8$									
	f ()2 · 4 · 2									
2	$f(x) = x^2 + 4x + 3$									
3	$f(x) = x^2 - 2x - 15$									
	, ,									
	2 -									
4	$f(x) = x^2 + 2x - 8$									
5	$f(x) = -x^2 - 2x + 3$									
6	$f(x) = -x^2 - 4x + 5$									
7	$f(x) = 2x^2 + 7x + 3$									
'	I(X) = 2X + 7X + 3									
8	$f(x) = 3x^2 - 7x + 2$									
	S() 4 2 4 1									
9	$f(x) = -4x^2 + 4x - 1$									
10	$f(x) = x^2 + 6x + 9$									
	-									
	2									
11	$f(x) = x^2 + 2x + 5$									
12	$f(x) = -2x^2 + 4x - 3$									
12	$\frac{1(X) - 2X + 7X^2J}{}$									
13	$f(x) = x^2 + 2x - 5$									
1 /	$f(x) = -2 \cdot 4 - 1$									
14	$f(x) = -x^2 + 4x - 1$									
Ь		<u> </u>		L		I	l	l		