Graphing quadratic functions.[rev.4]	Class/Section	Name	Date

A quadratic function is a function of the form $y = ax^2 + bx + c$, where a, b, and c are real numbers.

Skill #1. Evaluating a quadratic function.

Example. $f(x) = 3x^2-4x-5$. Evaluate f(x) for x = -2/3.

Answer: $f(-2/3) = 3(-2/3)^2 - 4(-2/3) - 5 = 3(4/9) - 4(-2/3) - 5 = 4/3 + 8/3 - 15/3 = -3/3 = -1$.

Skill #2. Calculating the **discriminant**.

A quadratic function has a **discriminant** $\Delta = b^2$ -4ac.

The discriminant of the function $f(x) = 3x^2-4x-5$ is calculated as follows.

First write down a,b, and c:

$$a = 3$$
 $b = -4$
 $c = -5$

Then write:

$$\Delta = b^{2}-4ac$$

$$= ()^{2}-4()()$$

$$= (-4)^{2}-4(3)(-5)$$

$$= 16+60=76.$$

Skill #3. Using the **discriminant**.

The **discriminant** Δ tells you several things.

- (a) If Δ is a perfect square integer ($\Delta = 0,1,4,9,16,25$, etc), then the quadratic polynomial factors over the integers.
- (b) If $\Delta > 0$, then the quadratic function has two different real roots.
- (c) If $\Delta = 0$, then the quadratic function has one real double root.
- (d) If $\Delta < 0$, then the quadratic function has no real roots, but it has two complex conjugate roots.

Example: the polynomial function $f(x) = 3x^2-4x-5$ has discriminant 76. Since 76 is not a perfect square, the polynomial cannot be factored over the integers. Since 76 > 0, the polynomial has two different real roots.

Skill #4. Does the parabola open up or down?

The graph of a quadratic function opens upwards (U) if the coefficient of x^2 is a positive number. The graph opens downwards (\cap) if the coefficient of x^2 is a negative number.

Skill #5. Finding the x-coordinate of the vertex, and the **line of symmetry** (axis of symmetry).

The **vertex of a parabola** (or quadratic function) is the (x,y) point which is the highest or lowest point on the curve. The **x-value of the vertex** is half-way between the two roots, or the average of the two roots. It may be calculated directly by the formula $\mathbf{x} = -\mathbf{b}/(2\mathbf{a})$.

Example: the x-value of the vertex of the equation $f(x) = 3x^2-4x-5$ is

$$x = -b/(2a) = -(-4)/(2(3)) = 4/6 = 2/3.$$

The line of symmetry (axis of symmetry) of the parabola is the vertical line through the vertex.

Graphing quadratic functions.[rev.4]	Class/Section	Name	Date

Skill #6. Finding the **y-coordinate of the vertex**.

The y-coordinate of the vertex is found by evaluating f(x) at the x-coordinate of the vertex. In the above example, the y-coordinate of the vertex is f(-b/(2a)) = f(2/3) = -19/3. (see Skill #1 above).

Skill #7. Finding the **roots** (also called the **x-intercepts**).

The **roots** of a function are the **x-values for which the function value (y-value) is zero**. Use factoring; but if the polynomial is not factorable, use the quadratic formula.

The QF (quadratic formula) for the roots of a quadratic function may be stated as follows:

If
$$ax^2+bx+c=0$$
, then $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-b\pm\sqrt{\Delta}}{2a}$.

Before evaluating the QF, be sure to write the values of a,b,c (see skill #2).

Note: from this formula, you can see that -b/(2a) is the average of the roots. Further, the distance between the roots is $\pm \sqrt{\Delta}/a$, and the distance along the x axis from either root to the line of symmetry is $(\sqrt{\Delta})/(2a)$.

Skill #8. Finding the **y-intercept**.

Find the y-intercept by evaluating the polynomial at x=0.

In our example $f(0) = 3(0)^2 - 4(0) - 5 = -5$. The y-intercept is at the point (0,-5).

Skill #9. Finding the symmetric point.

The symmetric point is at the same height as the y-intercept point. It is symmetric about the axis of symmetry to the y-intercept; so it is the same distance from the axis of symmetry as the y-intercept: (y-intercept) ------ axis ----- (symmetric point). So the symmetric point is a distance 2(-b/2a) = -b/a from the y-axis.

Skill #10. Graphing the quadratic function.

When graphing, do all the above things in order.

Your sketch should show: (a) the roots; (b) the vertex; (c) the line of symmetry; (d) the y-intercept; (e) the symmetric point; and perhaps one or two other points.

Skill #11. Solving the quadratic by completing the square. [not discussed here].

Graphing quadratic functions.[rev.4]	Class/Section	Name	Date
Exercises. Graph the following qu	uadratic functions.	Calculate th	e roots, the vertex, and the
discriminant. Find the y-intercept	and the symmetric	point. Show	at least one or two other
points on the graph.			

1	Equation	a	b	c	Δ	# of	vertev	X 7_	Symmetric	roots
	Equation	a	ט		Δ	real roots	vertex	y- intercept	point	10015
1	$f(x) = x^2 - 6x + 8$									
2	$f(x) = x^2 + 4x + 3$									
3	$f(x) = x^2 - 2x - 15$									
4	$f(x) = x^2 + 2x - 8$									
5	$f(x) = -x^2 - 2x + 3$									
6	$f(x) = -x^2 - 4x + 5$									
7	$f(x) = 2x^2 + 7x + 3$									
8	$f(x) = 3x^2 - 7x + 2$									
9	$f(x) = -4x^2 + 4x - 1$									
10	$f(x) = x^2 + 6x + 9$									
11	$f(x) = x^2 + 2x + 5$									
12	$f(x) = -2x^2 + 4x - 3$									
13	$f(x) = x^2 + 2x - 5$									
14	$f(x) = -x^2 + 4x - 1$									
						<u> </u>]			