The standard Pascal's triangle looks like this:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
(etc)

And it represents the coefficients of (A+B)ⁿ as follows:

$$(A+B)^{0} = 1$$

$$(A+B)^{1} = A+B$$

$$(A+B)^{2} = A^{2}+2AB+B^{2}$$

$$(A+B)^{3} = A^{3}+3A^{2}B+3AB^{2}+B^{3}$$

$$(A+B)^{4} = A^{4}+4A^{3}B+6A^{2}B^{2}+4AB^{3}+B^{4}$$

$$(A+B)^{5} = A^{5}+5A^{4}B+10A^{3}B^{2}+10A^{2}B^{3}+5AB^{4}+B^{5}$$

Notice how each pair of numbers (Above to the left) + (Above to the right) add to the entries in the triangle.

Example: 4+6 = 10, in row #4 and row #5.

Exercise: Using these facts, QUICKLY write the expanded versions of each power polynomial below:

	Problem	Answer
1	(x+1) ⁴	
-	(* -)	
2	(y-z) ⁵	
	(y 2)	
3	$(2x+3)^3$	
٦	(2/13)	
4	$(3x+y)^3$	
4	(SXTY)	
5	(10+2)4	
5	(10+2)	
6	(10-2) ³	
О	(10-2)	
	/216	
7	(2x+w) ⁶	