
Proof of the cosine of a sum formula

To prove: cos(x+y) = cos(x) cos(y) - sin(x) sin(y)

 $\triangle ACB$ is a right triangle. $\angle CAB = x$. $\angle B = 90^{\circ}$. AB = 1 $\triangle ACD$ is a right triangle, with $\angle DAC = y$, and $ACD = 90^{\circ}$. Segment DF is perpendicular to AB. Segment EC is perpendicular to CB. Figure FECB is a rectangle. P is the intersection of DF and AC.

	Statement	Reason
1	Construct $\triangle ACB$ with $\angle CAB = x$, $\angle B = 90^{\circ}$, AB= 1	Angle construction postulate.
2	AB / AC = cos(x)	cos = adjacent/hypotenuse
3	AC = 1/cos(x)	AB=1 (#1), and #2
4	Construct \triangle ACD, with D on the opposite side of segment AC from B, with \angle DAC =y, and ACD=90°.	Angle construction postulate.
5	\angle BAD = \angle (x+y)	By construction, and the Angle Addition Theorem (segment AC is interior to ∠ BAD); #4.
6	From D, drop a perpendicular to A B, meeting AB in point F	From a point not on a line, there exists a perpendicular to the line.
7	AC/AD = cos(y)	cos = adjacent/hypotenuse
8	$(1/\cos(x)) / AD = \cos(y)$	Substitution, #3, #7
9	AD = 1/[cos(x) cos(y)]	#8, multiply both sides by AD/cos(y)
10	AF/AD = cos(x+y)	cos = adjacent/hypotenuse
11	$AF = AD \cos(x+y) = \cos(x+y) / [\cos(x) \cos(y)]$	#9, #10
12	Segment AC and segment DF intersect in a point P	Since $\angle B$ is a right angle, $\angle x$ is acute, and AC and DF are not parallel.
13	∠ APF = ∠ DPC	Vertical angles are congruent
14	\angle FDC is complementary to \angle DPC	#4, #12
15	\angle APF is complementary to $\angle x$	#1, #6
16	\angle FDC = \angle BAC = x	Complements of the same ∠ are congruent, #14, #15
17	Construct CE perpendicular to DF from the point C	From a point not on a line, there exists a perpendicular to the line.
18	Figure FECB is a rectangle	#1,#4,#17, so it has 3 right angles
19	CE = FB	Opposite sides of a rectangle
20	DC = sin(y) AD = sin(y) / [cos(x) cos(y)]	sin = opposite/hypotenuse in ΔCED
21	$CE = DC \sin(x) = \sin(x) \sin(y) / [\cos(x) \cos(y)]$	sin = opposite/hypotenuse in ΔCED
22	AF+FB = AB = 1	Segment addition postulate
23	$\cos(x+y) / [\cos(x) \cos(y)] + \sin(x)\sin(y)/[\cos(x)\cos(y)] = 1$	#22, substitution, #11,#19,#21,
24	cos(x+y) + sin(x)sin(y) = cos(x)cos(y)	#23, multiply by cos(x)cos(y)
25	cos(x+y) = cos(x)cos(y) - sin(x)sin(y)	#24, subtraction

Which was to be proved.