Proof of the law of cosines: $a^{2} = b^{2} + c^{2} - 2bc \cos(A)$

Idea of proof:

Use the Pythagorean Theorem in triangle BFC. Use the fact that x/c = cos(A) and y/c = sin(A).

1	Given any triangle ΔABC,	given
	with sides $a = BC$, $b = AC$, $c = AB$	
2	Drop a perpendicular BF from B to side AC,	From a point not on a line, there
	with F on side AC.	exists exactly one perpendicular
		to the line (parallel postulate).
3	Let x = AF	
4	In $\triangle ABF$, x/c = cos (A), so x = AF = c cos(A).	ΔABF is a right Δ ; def. of cosine
5	In $\triangle ABF$, (BF)/c = sin (A), so y = BF = c sin(A).	ΔABF is a right Δ ; def. of sine
6	In \triangle BFC, a ² = (BF) ² + (FC) ² .	#1; Pythagorean Theorem
7	FC = AC - AF	Segment addition
8	FC = b - x.	Substitution,#7, #1, #3.
9	$FC = b - c \cos A$	Substitution, #8, #4
10	$a^{2} = (c \sin A)^{2} + (b - c \cos A)^{2}$	Substitution,#6,#5,#9
11	$a^{2} = c^{2} \sin^{2}(A) + b^{2} - 2bc \cos(A) + c^{2} \cos^{2}(A)$	#10, algebra
12	$a^{2} = c^{2} \sin^{2}(A) + c^{2} \cos^{2}(A) + b^{2} - 2bc \cos(A)$	#11,Commutative law of addition
13	$a^{2} = c^{2} [sin^{2}(A) + cos^{2}(A)] + b^{2} - 2bc cos(A)$	#12, distributive law
14	$a^{2} = c^{2} + b^{2} - 2bc \cos(A)$	#13, $\sin^2 + \cos^2 = 1$, substitution
		[basic Pythagorean identity]

Which was to be proved.