Curve sketching example.

	Problem	Work	Answer							
1	f(x) = <u>3(x-2)(x-5)</u>									
	5(x-2)(x-1)									
1a	At which value(s) of x	f is undefined if its denominator is zero.	x=2							
	is f(x) undefined?	5(x-2)(x-1) = 0 when x=2 or x=1.	x= 1							
1b	At which values of	Note that as $x \rightarrow 2$, but $x \neq 2$, we can cancel the (x-2)	x=2.							
	x=a, where f(a) is	factors in numerator and denominator.								
	undefined, does f	Remember that lim $x \rightarrow a f(x)$ DOES NOT DEPEND ON	The point							
	have a limit as x \rightarrow a?	THE VALUE OF f at x=a.	(2, -9/5) is called							
		Therefore, if x ≠ 2, then	a HOLE, or a							
		f(x) = 3(x-5)	REMOVABLE							
		<u>5(x-1)</u> .	DISCONTINUITY.							
		Using the second form of f(x), we can "plug in" the								
		value x=2 to get:								
		$\lim x \rightarrow 2 f(x) = 3((2)-5) / [5 ((2)-1)] = 3(-3)/5 =$								
		-9/5								
		However, at x=1, f(x) = 3(1-5)/[5(0)] =								
		= nonzero/zero.								
		,								
		Of the three forms below:								
		• 0/0 is undefined, but f could have a limit								
		there of +infinity, -infinity, or a number.								
		• 0/[non-zero] is always zero.								
		 [non-zero]/0 is infinite (+ , -, or both) 								
1c	At which values of	which values of x=1. f(1) = non-zero/0. see 1b.								
	x=a, where f(a) is		x=1.							
	undefined, does f									
	have no limit?									
1d	What are the <i>vertical</i>	x=1. This is the equation of a vertical line.	x=1							
	asymptotes of f?									
L			1							

1e	What are the <u>horizontal</u> <u>asymptotes</u> of f?	In this pr and bott f(x) is: f(x) = <u>3(1</u> 5(1 Now as x So lim (f(orizontal asymptotes, taroblem, we can transform om by the same number $\frac{-5/x}{x}$ -1/x). $x \rightarrow \infty$, numerator \rightarrow 3, a (x)) = 3/5. The line y=3, te of f(x).	y=3/5	
1f	What is the y- intercept of f(x) ?	-	ercept is found by evalu oblem, f(0) = [(3)(-5)] / [y=3	
1g	What are the critical points of f?	We need Using the the quot f'(x) = { 5 {15x-15 -	I to find points x=a when e reduced form of f from ient rule for the derivati $(x-1)(3) - 3(x-5)5 \} / \{ [5(x-1)^2 \} \}$ $(15x + 75 \} / \{ 25(x-1)^2 \}$ use, the derivative canno	No critical points.	
1h	In which region(s) is f(x) concave upwards?	Functions are concave upwards when $f''<0$. $f'(x) = (12/5) (x-1)^{-2}$. So $f''(x) = (12/5)(-2)(x-1)^{-3} = (-24/5) (x-1)^{-3}$. If x>1, (x-1) ⁻³ is positive and f'' is negative. If x<1, (x-1) ⁻³ is negative and f'' is positive.			f is concave up, when x>1 and x ≠ 2. f is concave down when x<1.
1j	Make a table of values for f(x). show x,f,f'. Use interesting points. f(x) = <u>3(x-5)</u> 5(x-1).	X 3 -1 4 -2	f(x) = 3(x-5) / 5(x-1). $-3/5$ $-9/5$ $-1/5$ $-21/(-15) = 7/5$	f'(x) = [60/25] /{ (x-1) ² }. 3/5 3/5 20/75 20/75	
1k	Using everything you know, accurately sketch the graph of f(x).			·	