Theorem (Extreme Value Theorem): If f(x) is a function defined and continuous on the closed interval [a,b], then f attains its maximum at some point $c \in [a,b]$.

Outline of proof:

- 0. Definition. An infinite sequence $\langle x_n | n \in \mathbb{N} \rangle$ converges to x_0 iff $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $\forall n \in \mathbb{N}, |x_n x_0| < \epsilon$.
- 1. Bolzano-Weierstrass Theorem. Every bounded infinite sequence has a convergent subsequence.
- 2. The range of a continuous function f with domain the closed interval [a,b] is bounded. That is, $\exists N \in \mathbb{N}$, such that $\forall x \in [a,b]$, f(x) < N.
- 3. There is a least upper bound for the range of any continuous function defined on a closed interval.
- 4. The function in #2,3 actually attains its maximum, for some $c \in [a,b]$.

Proof:

Step 1. Bolzano-Weierstrass Theorem. Every bounded infinite sequence has a convergent subsequence.

We may assume that [a,b] = [0,1].

Suppose $\langle x_n | n \in \mathbb{N} \rangle$ is a sequence of elements on the interval [0,1].

Define a sequence of intervals S_i and points M_i and y_i as follows:

Let $S_1 = [0,1]$. Let M_1 = the midpoint of S_1 . $M_1 = \frac{1}{2}$. Let $y_1 = x_1$.

Then either $[0, M_1]$ or $[M_1, 1]$ or both, must contain an infinite number of the x_i 's, otherwise the sequence could not be an infinite sequence.

If $[0, M_1]$ contains an infinite number of the x_i's, let $S_2 = [0, M_1]$.

Otherwise, let $S_2 = [M_1, 1]$.

Let M_2 = the midpoint of S_2 .

Let y_2 = the first x_i beyond x_1 in the sequence $\langle x_n \rangle$ for which $y_2 \in S_2$.

Continue this process infinitely, choosing if possible the left-hand of the two

intervals at each step. Then, $\langle y_n | n \in \mathbb{N} \rangle$ is a subsequence of $\langle x_n \rangle$.

From the sequence of left endpoints of S_n , define the number c with a binary expansion

with the n-1th binary place = 0 or 1, according as S_n was the left or right interval chosen.

Claim: the sequence $\langle y_n | n \in \mathbb{N} \rangle$ converges to the point c.

The claim is true because each interval Sn+1 is contained in the interval Sn, and the width of Sn = $(1/2^n)$. Therefore the sequence $\langle y_n \rangle$ is a convergent subsequence of $\langle x_n \rangle$.

Step 2. The range of a continuous function f with domain the closed interval [a,b] is bounded. That is, $\exists N \in \mathbb{N}$, such that $\forall x \in [a,b]$, f(x) < N.

Proof: Consider the sequence of sets $T_n = \{x \text{ in } [a,b] \mid f(x) > n\}$, where $n \in \mathbb{N}$. Each T_n contains T_{n+1} . Either all of the T_n are not empty, or there is an N such that $\forall n > N$, T_n is empty. If all T_n are not empty, then let $x_n =$ the midpoint of T_n .

The sequence $\langle x_n \rangle$ is an infinite sequence in a bounded closed interval.

By Step (1), the Bolzano-Weierstrass theorem, there exists a convergent

subsequence $\langle y_n \rangle$ of $\langle x_n \rangle$. Suppose $\langle y_n \rangle$ converges to c.

Since f is a continuous function, the sequence $< f(y_n) > must$ converge to f(c).

But $f(y_n) > n$. So the limit as n approaches infinity of $f(y_n) =$ infinity. This means f(c) is not

a finite number, which means f is undefined at c, contradicting the assumption that f is defined at every number in [a,b].

Therefore, some T_n is empty. Therefore that number n is an upper bound of the range of f.

Step 3. The range of the function f, in step 2 above, has a least upper bound.

Proof: since the range of f is a subset of the Real Numbers, and it is bounded above, then the range has a least upper bound, by the Completeness property of the Real Numbers.

Step 4. The function in #2,3 actually attains its maximum, for some $c \in [a,b]$.

Proof:

Let L = the upper bound of the range of f. Let $U_n = \{x \in [a,b] \mid f(x) > L - 1/n\}$.

If for some n, U_n were empty, then L could not be the least upper bound of f(x),

because L – 1/n would be a smaller upper bound. Therefore, all U_n are non-empty.

For each n, let q_n be an element of U_n . Then, the sequence $\langle q_n \rangle$ is an infinite sequence, and, by the Bolzano-Weierstrass Theorem, has a convergent subsequence $\langle r_n \rangle$. For each n, $f(r_n) \ge f(q_n)$ Let c be the limit of the sequence $\langle r_n \rangle$. Since $f(r_n) \ge f(q_n) > L - 1/n$, the limit as $n \rightarrow$ infinity of $f(q_n)$ must not be less than L. Hence, since f is continuous, f(c)=L, and f attains its maximum at c.

End of proof.