1. Find the following limits, or show that they do not exist:

(a)
$$\lim_{y \to 2} \frac{y^2 - 4}{y^2 - y - 2} = \frac{4}{3}$$

(b)
$$\lim_{x \to 0^+} \frac{x}{\sqrt{1 + x} - 1} = 2$$

(c)
$$\lim_{x \to 1^-} \frac{x}{\ln x} = -\infty$$

(d)
$$\lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x$$

(e)
$$\lim_{x \to -\infty} \frac{5x^3 + x - 1}{2x^3 - 7} = \frac{5}{2}$$

(f)
$$\lim_{x \to \infty} \frac{\sqrt{9x^3 - 2}}{x^2 + 4} = 0$$

(h)
$$\lim_{h \to 0} \frac{2(x+h)^3 - 2x^3}{h} = 6x^2$$

2. (a)
$$\frac{xe^{\sqrt{x^2 + 1}}}{\sqrt{x^2 + 1}}$$

(b)
$$\frac{2}{x} + 1$$

(c)
$$6\sin^2(2\theta)\cos(\theta)$$

(d)
$$2x + \sec^2 x$$

(e)
$$-(2 + x^4)^5$$

(f)
$$\cos^2(x^3) \cdot 3x^2$$

(g)
$$\frac{dy}{dx} = \frac{-4x - 1 - y}{x}$$

(h)
$$\frac{dy}{dx} = \frac{-\sin y - y\cos x}{x\cos y + \sin x}$$

3. (a)
$$\frac{x^3}{3} + 3\ln |x| + C$$

(b)
$$\ln |\sin x| + C$$

(c)
$$x + \frac{1}{2}e^{2x} + C$$

(d)
$$\frac{2}{3}(\ln x)^{3/2} + C$$

4.
$$3x + \ln |x| - 1$$

5.
$$\frac{x^2}{2} + \cos x + 6$$

- 6. Let $f(x) = x^4 8x^2 + 8$.
 - (a) Increasing on (-2, 0) and $(2, \infty)$, and decreasing on $(-\infty, -2)$ and (0, 2).
 - (b) Concave up on $(-\infty, -2/\sqrt{3})$ and $(2/\sqrt{3}), \infty$). Concave down on $(-2/\sqrt{3}, 2/\sqrt{3})$.
 - (c) Check your graph with www.desmos.com.
- 7. Let $f(x) = x^5 15x^3$.
 - (a) Increasing on $(-\infty, -3)$ and $(3, \infty)$ and decreasing on (-3, 0) and (0, 3) (f is briefly flat at x = 0).
 - (b) Concave up on $(-3/\sqrt{2}, 0)$ and $(3/\sqrt{2}, \infty)$, and concave down on $(-\infty, -3/\sqrt{2} \text{ and } (0, 3/\sqrt{2}))$.
 - (c) Check your graph with www.desmos.com.
- 8. Let $f(x) = \frac{x+2.5}{x^2-4}$.
 - (a) Horizontal: y = 0. Vertical: x = 2 and x = -2.
 - (b) Increasing on (-4, -2) and (-2, -1). Decreasing on $(-\infty, -4)$, (-1, 2), and $(2, \infty)$. (The derivative is undefined at x = 2 and x = -2.)
 - (c) Check your graph with www.desmos.com.
- 9. Let $f(x) = \frac{2x^3 + 1}{x^3 1}$.
 - (a) Horizontal: y = 2. Vertical: x = 1.
 - (b) Decreasing on $(-\infty, 0)$, (0, 1), and $(1, \infty)$. (The derivative is 0 at x = 0 and undefined at x = 1.)
 - (c) Check your graph with www.desmos.com
- 10. $(1.001)^9 \approx 1.009$
- 11. $e^{0.2} \approx 1.2$.
- 12. $9 + \sqrt{17}$
- 13. 83/65
- 14. (3,2)
- 16. Let $f(x) = x^3 + 4x 7$.
 - (a) Use the Intermediate Value Theorem to show that f(x) has at least one root.
 - First of all, f is a polynomial, and so it is continuous. It is really important to say this, because otherwise the Intermediate Value Theorem does not apply! We note that f(0) = -7 and f(2) = 9, and so f has both negative and positive outputs. Then, since f(0) < 0 < f(2), the Intermediate Value Theorem says that for some c such that 0 < c < 2, we have f(c) = 0. In other words, f(x) has a root on the interval (0, 2).

- (b) Use the Mean Value Theorem or Rolle's Theorem to show that f(x) has at most one root. Since f is a polynomial, it is continuous and differentiable everywhere, and so Rolle's Theorem applies. Suppose that f(x) has two or more roots, and pick two of them, say x = a and x = b. In other words, f(a) = f(b) = 0. Then by Rolle's Theorem, f'(c) = 0 for some value of c. On the other hand, we note that $f'(x) = 3x^2 + 4$, and therefore, $f'(x) \ge 4$ for all x. Then it cannot happen that f'(c) = 0, and having arrived at a contradiction, that means that our assumption was wrong. So f(x) does not have two or more roots; in other words, it has at most 1 root.
- 17. Let $g(x) = e^x + x + 2$.
 - (a) Use the Intermediate Value Theorem to show that g(x) has at least one root.

The function g(x) is the sum of e^x and x + 2, both of which we know to be continuous, and thus g is itself continuous. So we may apply the Intermediate Value Theorem. We note that $g(-10) = e^{-10} - 10 + 2 = e^{-10} - 8$, and since $e^{-10} = 1/e^{10}$, that part is a very small number, and so $e^{-10} - 8$ is negative. We also note that $g(0) = e^0 + 0 + 2 = 1 + 0 + 2 = 3$. Therefore, g(-10) < 0 < g(0). Thus, the Intermediate Value Theorem says that for some c such that -10 < c < 0, we have g(c) = 0. In other words, g(x) has a root on the interval (-10, 0).

(b) Use the Mean Value Theorem or Rolle's Theorem to show that g(x) has at most one root. Again, g is the sum of e^x and x+2, both of which we know to be continuous and differentiable, and so Rolle's Theorem applies. Suppose that g(x) has two or more roots, and pick two of them, say x = a and x = b. In other words, g(a) = g(b) = 0. Then by Rolle's Theorem, g'(c) = 0 for some value of c. On the other hand, we note that $g'(x) = e^x + 1$, and since e^x is always positive, $g'(x) \ge 1$ for all x. Then it cannot happen that g'(c) = 0, and having arrived at a contradiction, that means that our assumption was wrong. So g(x) does not have two or more roots; in other words, it has at most 1 root.

18.
$$dr/dt = -\sqrt{10}/8\sqrt{\pi}$$

19.
$$dy/dt = -9/10$$

- $20. \ 32/3$
- 21. $e^2 \frac{11}{3}$
- 22. $16\pi/15$
- 23. $3\pi/10$