
MATH 140 Spring 2015 Final exam practice problems - Solutions

1. Find the following limits, or show that they do not exist:

(a) lim
y→2

y2 − 4

y2 − y − 2
Substituting y = 2 gives us 0/0, so we look for a way to simplify:

y2 − 4

y2 − y − 2
=

(y − 2)(y + 2)

(y − 2)(y + 1)
=
y + 2

y + 1
.

Now substituting y = 2 yields 4/3.

(b) lim
x→0+

x√
1 + x− 1

Substituting x = 0 gives 0/0. To simplify, we multiply top and bottom by
√

1 + x+ 1, giving
us:

x(
√

1 + x+ 1)

(
√

1 + x− 1)(
√

1 + x+ 1)
=
x(
√

1 + x+ 1)

(
√

1 + x)2 − 1
=
x(
√

1 + x+ 1)

x
=
√

1 + x+ 1.

Now substituting x = 0 gives us 2.

(c) lim
x→1−

x

lnx
Substituting x = 1 yields 1/ ln(1), and since ln(1) = 0, we get 1/0. Since we have nonzero
/ zero, that indicates an infinite limit. Since x is approaching 1 from the left, we consider
x-values a little less than 1; in that case, lnx is a little less than 0. In other words, lnx is
a small negative number, and so we have 1 / (small negative), which gives a large negative.
Thus, we see that we get a limit of −∞.

(d) lim
h→0

ex+h − ex

h
Substituting h = 0 gives us 0/0. This one is difficult to solve directly, but there is a
nice trick. The form of the limit looks familiar; remember that the definition of f ′(x) is

lim
h→0

f(x+ h)− f(x)

h
. Therefore, the given limit stands for the derivative of ex, which is ex.

(e) lim
x→−∞

5x3 + x− 1

2x3 − 7
”Substituting” x = −∞ gives us −∞/ −∞. Just like 0/0, this is not really an answer; we
have to find a way to simplify the function. If we divide top and bottom by x3, we get
5 + 1

x2 − 1
x3

2− 7
x3

. Now as x→∞, the terms with a constant on top and a power of x on bottom

shrink to 0, and we are left with 5/2.

(f) lim
z→1+

z − 3

z − 1
Substituting z = 1 gives us −2/0, which indicates an infinite limit. To see whether we get
∞ or −∞, we consider a z-value a little larger than 1 (since we are approaching 1 from the
right). In that case, the top is a little larger than −2, and the bottom is a little larger than
0. Since we get a negative over a positive, that means we are getting negative outputs as z
approaches 1 from the right, and thus the limit is −∞.



(g) lim
x→∞

√
9x3 − 2

x2 + 4
”Substituting” x = ∞ gives ∞/∞, and we need to simplify the function. Let us divide the
top and bottom by x2. On bottom, we will get 1 + 4

x2 . On top we need to be careful; we

cannot just divide the terms inside the square root by x2. We note that x2 =
√
x4, and so

√
9x3 − 2

x2
=

√
9x3 − 2√
x4

=

√
9x3 − 2

x4
=

√
9

x
− 2

x4
.

Thus, after dividing the top and bottom of our original function by x2, we get√
9
x −

2
x4

1 + 4
x2

.

Now when we substitute x =∞, we get 0/1, which is 0.

(h) lim
h→0

2(x+ h)3 − 2x3

h
Substituting h = 0 gives 0/0. It is possible to do this directly, by expanding (x + h)3, but
that is a little tricky. (In particular, (x+h)3 = x3 + 3x2h+ 3xh2 +h3.) A better approach is
to notice, as in part (d), that this limit looks like the definition of a derivative. Indeed, this
limit represents the derivative of 2x3, and so the value of the limit is 6x2.

2. Find the derivative of the following functions.

(a) e
√
x2+1

d

dx
(e
√
x2+1) = e

√
x2+1· d

dx
(
√
x2 + 1) = e

√
x2+1· 1

2
√
x2 + 1

· d
dx

(x2+1) = e
√
x2+1· 1

2
√
x2 + 1

·2x =
xe
√
x2+1

√
x2 + 1

.

(b) ln(x2ex)

Solution 1: For any quantities u and v, ln(uv) = ln(u) + ln(v). Therefore, ln(x2ex) =
ln(x2) + ln(ex). This can be simplified further using properties of logarithms; ln(x2) = 2 lnx
and ln(ex) = x. Therefore,

d

dx
(ln(x2ex)) =

d

dx
(2 lnx+ x) =

2

x
+ 1.

Solution 2: We can also do this using the chain rule and product rule:

d

dx
(ln(x2ex)) =

1

x2ex
· d
dx

(x2ex) =
2xex + x2ex

x2ex
=

2

x
+ 1.

(c) sin3(2θ)

Remember that sin3(2θ) is a shorthand for (sin(2θ))3. Then, using the chain rule twice, we
get

d

dθ
((sin(2θ))3) = 3(sin(2θ))2· d

dθ
(sin(2θ)) = 3(sin(2θ))2·cos(2θ))· d

dθ
(2θ) = 3(sin(2θ))2·cos(2θ)·2 = 6 sin2(2θ) cos(θ).



(d) x

(
x+

tanx

x

)
You could use the product rule and then the quotient rule, but it is much easier if you first
simplify the function by multiplying the x in, giving you x2 + tanx. Therefore,

d

dx

(
x

(
x+

tanx

x

))
=

d

dx
(x2 + tanx) = 2x+ sec2 x.

(e) f(x) =

∫ 1

x

(2 + t4)5 dt

The Fundamental Theorem of Calculus says that (for sufficiently ”nice” functions g),

d

dx

(∫ x

a

g(t) dt

)
= g(x).

Since switching the upper and lower bound of an integral just changes the sign, we get

d

dx

(∫ 1

x

(2 + t4)5 dt

)
= − d

dx

(∫ x

1

(2 + t4)5 dt

)
= −(2 + x4)5.

(f) g(x) =

∫ x3

5

cos2 t dt

In order to use the Fundamental Theorem of Calculus, we need the upper bound to be a
single variable, not an expression like x3. If we make the substitution u = x3, then

d

du

(∫ x3

5

cos2 t dt

)
=

d

du

(∫ u

5

cos2 t dt

)
= cos2(u).

But we want dg/dx, not dg/du. The chain rule tells us that dg/dx = dg/du · du/dx, and so

dg

dx
= cos2(u) · 3x2 = cos2(x3) · 3x2.

(g) Find dy/dx if 2x2 + x+ xy = 1.

We start by taking d/dx of both sides, remembering to apply the product rule when we take
d/dx of xy:

4x+ 1 + (1 · y + x · dy
dx

) = 0.

Now we solve for dy/dx by subtracting the first three terms from both sides and then dividing
by x:

dy

dx
=
−4x− 1− y

x
.

(h) Find y′ if x sin y + y sinx = 4.

We start by taking d/dx of both sides, applying the product rule to both terms on the left:

(1 · sin y + x · cos y · dy
dx

) + (
dy

dx
· sinx+ y · cosx) = 0.



Now we move the terms without dy/dx over to the right:

x cos y
dy

dx
+
dy

dx
sinx = − sin y − y cosx.

Finally, we factor dy/dx out of both terms on the left and divide by the coefficient that
remains:

dy

dx
=
− sin y − y cosx

x cos y + sinx
.

3. Evaluate the following integrals.

(a)

∫
x4 + 3x

x2
dx

Just like derivatives, integrals don’t ”split up” over division, so you cannot just deal with the
top and the bottom separately. Instead, we start by simplifying the function on the inside:

x4 + 3x

x2
=
x4

x2
+

3x

x2
= x2 +

3

x
.

Therefore, ∫
x4 + 3x

x2
dx =

∫
(x2 +

3

x
) dx =

x3

3
+ 3 ln |x|+ C.

(b)

∫
cosx

sinx
dx

Again, we cannot just take the antiderivative of each part and divide them. Instead, we make
the substitution u = sinx, which also gives us du = cosx dx. Then our original integral
translates to

∫
1
u du. The general antiderivative of 1/u is ln |u|+ C, and since u = sinx, we

get ln | sinx|+ C.

(c)

∫
(1 + ex)(1− ex) dx

For finding integrals, we only have two basic tools at our disposal: algebraic manipulation,
and substitution. It is often a good idea to try algebraic manipulation first, and here we can
just multiply the two binomials:

(1 + ex)(1− ex) = 1 + ex − ex − (ex)2 = 1− e2x.

Thus, we want to find ∫
(1− e2x) dx.

Integrals do split up over addition and subtraction, so this is equal to∫
1 dx−

∫
e2x dx.

The first integral is just x (and we will omit the ”+C” here and just put a single one on at the
end). To integrate e2x requires a minor substitution; we set u = 2x, in which case du = 2dx
and thus dx = 1

2du. Therefore,∫
e2x dx =

∫
1

2
eu du =

1

2
eu + C =

1

2
e2x + C.



Putting it all together yields

x+
1

2
e2x + C.

(d)

∫ √
lnx

x
dx

There is no obvious algebraic manipulation, so we look for a substitution to try. When you
are unsure, try picking the inside of a function for u. For example, here we have lnx all under
a square root, so we try u = lnx. This gives us du = 1

x dx, and after translating x and dx
we get ∫ √

u du.

(Try expanding out that integral using u = lnx and du = 1
x dx to convince yourself that it is

the same as what we started with.) Now,
√
u = u1/2, and therefore,∫ √

u du =

∫
u1/2 du =

u3/2

3/2
+ C =

2

3
(lnx)3/2 + C.

4. Find f(x) if f ′(x) = 3 + 1
x and f(1) = 2.

Since we are given f ′(x), we find f(x) by integrating the given function. We get that

f(x) =

∫
f ′(x) dx =

∫
(3 +

1

x
) dx = 3x+ ln |x|+ C.

Technically, what we have at the moment is a family of functions, one for each value that C can
take. We want a single, specific function that satisfies f(1) = 2. Thus, we want

2 = f(1) = 3 + ln |1|+ C.

Since ln 1 = 0, we get that 2 = 3 +C, and so C = −1. Therefore, f(x) = 3x+ ln |x| − 1. We note
that checking our answer is simple; it is true that f ′(x) = 3 + 1

x , and it is also true that f(1) = 2.

5. Find g(x) if g′(x) = x− sinx and g(0) = 7.

Proceeding as the previous problem, we start with

g(x) =

∫
(x− sinx) dx =

x2

2
+ cosx+ C.

We solve for C by setting 7 equal to g(0):

7 = g(0) = 0 + cos 0 + C = 1 + C.

Therefore, C = 6, and our answer is g(x) = x2

2 + cosx+ 6.

6. Let f(x) = x4 − 8x2 + 8.

(a) Find the intervals of increase and decrease.

We start by finding the critical points, which we get by setting f ′(x) = 0 and solving. We
get that f ′(x) = 4x3 − 16x = 4x(x2 − 4) = 4x(x − 2)(x + 2), and thus we get three critical
points: x = −2, x = 0, and x = 2. So we get 4 ranges: (−∞,−2), (−2, 0), (0, 2), and (2,∞).



For each interval, we try a number in that range to see whether the derivative is positive
or negative. For x < −2, we see that if we plug in −3, for example, we get the product of
three negative numbers, so it is negative. For −2 < x < 0, if we try x = −1, then we get
one positive number times two negative numbers, yielding a positive number. Repeating the
process on the two remaining ranges shows that for 0 < x < 2, we get a negative derivative,
and for x > 2, we get a positive derivative. Thus, f(x) is increasing on (−2, 0) and (2,∞),
and it is decreasing on (−∞,−2) and (0, 2).

(b) Find the intervals where f is concave up, and where it is concave down.

We proceed similarly to the previous part, but with f ′′(x) instead of f ′(x). Since f ′(x) =
4x3 − 16x, we see that f ′′(x) = 12x2 − 16. Setting that to 0 and solving gives us that x2 =
16/12 = 4/3, and thus x = ±2/

√
3. So we get three ranges: (−∞,−2/

√
3), (−2/

√
3, 2/
√

3),
and (2/

√
3,∞). Picking numbers in each range and putting them in to f ′′(x) shows that

f ′′(x) is positive on (−∞,−2/
√

3) and (2/
√

3),∞), and so f is concave up on that range.
On (−2/

√
3, 2/
√

3), we get that f ′′(x) is negative, and so f is concave down on that range.

(c) Sketch a graph that fits your information.

Check your sketch with a graphing tool such as the one at desmos.com.

7. Let f(x) = x5 − 15x3.

(a) Find the intervals of increase and decrease.

First we find the critical points. f ′(x) = 5x4−45x2 = 5x2(x2−9) = 5x2(x+3)(x−3). Thus,
f ′(x) = 0 for x = 0, x = −3, and x = 3. So we get 4 ranges to test: (−∞,−3), (−3, 0), (0, 3),
and (3,∞). Testing x-values in those ranges shows that f ′(x) is positive on (−∞,−3) and
on (3,∞), and so f is increasing on those intervals. On the other hand, f ′(x) is negative on
(−3, 0) and (0, 3), and so f is decreasing on (−3, 3).

(b) Find the intervals where f is concave up, and where it is concave down.

We find that f ′′(x) = 20x3 − 90x = 10x(2x2 − 9). Setting that to 0 and solving yields x = 0
or 2x2 = 9, which means x = ±

√
9/2 = ±3/

√
2. Then on (−∞,−3/

√
2), we find f ′′(x) is

negative, and so f is concave down. On (−3/
√

2, 0), we get that f ′′(x) is positive, so f is
concave up. On (0, 3/

√
2), f ′′(x) is negative, so f is concave down, and on (3/

√
2,∞), f ′′(x)

is positive, and so f is concave up.

(c) Sketch a graph that fits your information.

Check your sketch with a graphing tool such as the one at desmos.com.

8. Let f(x) = x+2.5
x2−4 .

(a) Find the equations of any horizontal and vertical asymptotes.

To find horizontal asymptotes, we look at the limit of f(x) as x → ∞. Dividing top and
bottom of f(x) by x, we get that

f(x) =
1 + 2.5

x

x− 4
x

,

And as x → ∞, the top approaches 1 while the bottom continues to get larger and larger.
Thus, the limit is 0, which means that the horizontal line y = 0 is an asymptote of f(x).
Furthermore, note that we get the same result as x→ −∞, and so the graph should approach
the line y = 0 both to the right and to the left.



To find vertical asymptotes, we look for x-values that make the bottom 0 while making the
top nonzero. Setting the bottom to 0 and solving yields x2 = 4, so x = ±2, which does not
make the top 0. So x = −2 and x = 2 are both vertical asymptotes. In particular,

lim
x→2+

x+ 2.5

x2 − 4
=∞,

because as x approaches 2 from the right, both the top and the bottom are positive. Using
similar arguments, we can find that

lim
x→2−

x+ 2.5

x2 − 4
= −∞,

lim
x→−2+

x+ 2.5

x2 − 4
= −∞,

lim
x→−2−

x+ 2.5

x2 − 4
=∞.

(b) Find the intervals of increase and decrease.

We take the derivative of f(x) using the quotient rule and then simplify:

f ′(x) =
(x2 − 4)(x+ 2.5)′ − (x+ 2.5)(x2 − 4)′

(x2 − 4)2
=

(x2 − 4)(1)− (x+ 2.5)(2x)

(x2 − 4)2
=
−x2 − 5x− 4

(x2 − 4)2
=
−(x+ 1)(x+ 4)

(x2 − 4)2
.

Now, to find the intervals of increase and decrease, we need to find where f ′(x) is positive or
negative. We note that the bottom of f ′(x) is always positive (as long as x 6= ±2), and so
the sign of f ′(x) is the same as the sign of the top. We see that the top, −(x + 1)(x + 4),
is 0 when x = −1 and when x = −4, and thus we get three ranges: (−∞,−4), (−4,−1),
and (−1,∞). Checking the sign of −(x + 1)(x + 4) over those ranges, we see that f ′(x) is
positive for x-values in (−4,−1) and negative otherwise. Thus, f is increasing on (−4,−1)
and decreasing on (−∞,−4) and (−1,∞). To be really precise, we should exclude x = 2 and
x = −2 from those ranges, since f ′(x) is undefined there. So f is increasing on (−4,−2) and
(−2,−1) and decreasing on (−∞,−4), (−1, 2), and (2,∞).

(c) Sketch a graph that fits your information.

Check your sketch with a graphing tool such as the one at desmos.com.

9. Let f(x) = 2x3+1
x3−1 .

(a) Find the equations of any horizontal and vertical asymptotes.

To find horizontal asymptotes, we look at the limit of f(x) as x → ∞. Dividing top and
bottom of f(x) by x3, we get that

f(x) =
2 + 1

x3

1− 1
x3

,

And as x→∞, the top approaches 2 while the bottom approaches 1, and we get a limit of 2.
We get the same result as x → −∞, and so the graph should approach the line y = 2 both
to the right and to the left.



We find the vertical asymptotes by setting the bottom to 0 and solving. That gives us x3 = 1,
which has the single solution x = 1. Therefore, x = 1 is a vertical asymptote. Furthermore,

lim
x→1+

2x3 + 1

x3 − 1
=∞,

since as x gets close to 1 from the right, we get a positive over a positive, yielding a positive
answer. In a similar way, we find that

lim
x→1−

2x3 + 1

x3 − 1
= −∞.

(b) Find the intervals of increase and decrease.

We start by taking the derivative, using the quotient rule:

f ′(x) =
(x3 − 1)(2x3 + 1)′ − (2x3 + 1)(x3 − 1)′

(x3 − 1)2
=

(x3 − 1)(6x2)− (2x3 + 1)(3x2)

(x3 − 1)2
=

−9x2

(x3 − 1)2
.

We note that the only x-value that gives us f ′(x) = 0 is x = 0, and that the derivative
is undefined at x = 1. Other than those x-values, anything we substitute for x gives us a
negative over a positive, and so f is decreasing everywhere, except that it is briefly flat at
x = 0 and undefined at x = 1.

(c) Sketch a graph that fits your information.

Check your sketch with a graphing tool such as the one at desmos.com.

10. Use a linear approximation to estimate (1.001)9. Be clear about which function you are using
(f(x)) and the point where you are taking the linearization (the a in the textbook).

We start by trying to pick a function f(x) that seems naturally connected with (1.001)9. The
easiest choice is f(x) = x9. Next, I want to pick an x-value a that is close to 1.001 but much easier
to deal with. Often you will accomplish this by rounding; here we will use a = 1. Now, the first
thing I have to do is find the linearization of x9 at a = 1, which is just the function corresponding
to the tangent line at that point. The general formula for this linearization is:

L(x) = f(a) + f ′(a) · (x− a).

We have f(a) = 19 = 1, and f ′(x) = 9x8, so f ′(a) = 9(1)8 = 9. Therefore, we get

L(x) = 1 + 9(x− 1) = 9x− 8.

A good check on whether you’ve done things correctly is this: you should be able to simplify your
L(x) into the form L(x) = mx+ b as we have done here.

Finally, once we have the linearization, we can approximate (1.001)9 (which is f(1.001)) by calcu-
lating L(1.001):

L(1.001) = 9(1.001)− 8 = 1.009.

11. Use a linear approximation to estimate e0.2. Be clear about which function you are using (f(x))
and the point where you are taking the linearization (the a in the textbook).

The natural function to pick is f(x) = ex, and we round 0.2 to get a = 0. Then f(a) = e0 = 1,
and since f ′(x) = ex as well, then f ′(a) = e0 = 1 too. Thus:

L(x) = 1 + 1(x− 0) = 1 + x.



Therefore,
e0.2 ≈ L(0.2) = 1.2.

12. Approximate

∫ 4

0

√
8x+ 1 using a Riemann sum with 4 terms (n = 4) and taking the sample

point x∗i in each subinterval to be the left end point of that subinterval. (That is, estimate the
integral using 4 rectangles and left endpoints.) (No credit for solving the integral exactly using
the Fundamental Theorem; we want an approximation.)

We start by splitting the interval [0, 4] (indicated by the limits of the integral) into 4 pieces
(indicated by n), and so we get ranges [0, 1], [1, 2], [2, 3], and [3, 4]. Since each range has width 1,
we set ∆x = 1. Now, to approximate this integral, we calculate

f(x∗1)∆x+ f(x∗2)∆x+ f(x∗3)∆x+ f(x∗4)∆x,

where f(x) =
√

8x+ 1, the function inside the integral. In this case, we are told to pick the left
endpoints as our sample points, so we want

f(0)∆x+ f(1)∆x+ f(2)∆x+ f(3)∆x.

This gives us
(1)(1) + (3)(1) +

√
17(1) + (5)(1) = 9 +

√
17.

13. Approximate

∫ 6

0

1

x2 + 1
using a Riemann sum with 3 terms (n = 3) and taking the sample point

x∗i in each subinterval to be the midpoint of that interval. (No credit for solving the integral
exactly using the Fundamental Theorem; we want an approximation.)

We start by splitting the interval [0, 6] (indicated by the limits of the integral) into 3 pieces
(indicated by n), and so we get ranges [0, 2], [2, 4], and [4, 6]. Since each range has width 2, we set
∆x = 2. Now, to approximate this integral, we calculate

f(x∗1)∆x+ f(x∗2)∆x+ f(x∗3)∆x,

where f(x) = 1
x2+1 , the function inside the integral. In this case, we are told to pick the midpoints

as our sample points, so we want

f(1)∆x+ f(3)∆x+ f(5)∆x.

This gives us

(1/2)(2) + (1/10)(2) + (1/26)(2) = 1 +
1

5
+

1

13
=

65

65
+

13

65
+

5

65
=

83

65
.

14. What is the point on the hyperbola xy − y = 4 that is closest to the point (1, 0)?

That key word ”closest” tells us that this is an optimization problem: we are trying to make
distance as small as possible. If we have a point (x, y), its distance to (1, 0) is

√
(x− 1)2 + (y − 0)2.

When dealing with problems of this sort (minimizing distance), there is a common trick that is
useful: we just focus on minimizing the function that is under the square root. So we want to make
(x− 1)2 + y2 as small as possible. Next, we need to transform this function into a single-variable
function. Since our point must lie on the hyperbola xy− y = 4, that means that (x− 1)y = 4, and



thus y = 4/(x− 1). Substituting that into (x− 1)2 + y2 gives us that the function to minimize is
f(x) = (x− 1)2 + 16

(x−1)2 . We take its derivative and get f ′(x) = 2(x− 1)− 32
(x−1)3 . Setting that to

0 and solving gives us that 2(x− 1)4 = 32, and thus (x− 1)4 = 16, which means that (x− 1) = 2;
thus x = 3. This is our only critical point, and we can check that f ′(x) is negative when x < 3
and positive when x > 3, so this really is our local minimum. Since f(x) has only a single critical
point, and it is a local minimum, it follows that it is the absolute minimum. Finally, to get the
corresponding y-value, we just put our x value back into the equation y = 4/(x− 1) to get y = 2.
Therefore, the point (3, 2) is the point on this hyperbola that is closest to (1, 0).

15. You want to build a rectangular box with a square base out of sheet metal. You are going to use
2 pieces of sheet metal for the bottom of the box to reinforce it, and only a single piece of sheet
metal for all of the sides and the top. If you want to use no more than 36 sq. ft. of material, what
is the largest possible volume you can enclose?

We are deciding on the dimensions to use for the box: width, depth, and height. Since the base
must be a square, we have that width and depth are equal. So let us use x for the width and
depth and y for the height. The 4 sides of the box (left, right, front, and back) have dimensions
x by y, and so they have area xy. Since there are 4 of them, they contribute 4xy to the total
area of metal used. The top and bottom both have dimensions x by x, and so they have area x2.
However, we are going to use two pieces of sheet metal for the bottom, which means we need 3
pieces of this area, instead of 2. Therefore, the total material we are going to use is 4xy + 3x2.
We are only allowed to use 36 sq. ft, so we have the constraint that 4xy + 3x2 = 36.

Now, our goal is to maximize volume, which is the product of width, depth, and height. Thus we
have V = x2y. In order to maximize this, we first need to put things in terms of a single variable.

If we solve our constraint for y, we get that 4xy = 36 − 3x2, and thus y = 36−3x2

4x . Putting that
into the volume formula yields

V = x2y = x2
36− 3x2

4x
= x

36− 3x2

4
=

36x− 3x3

4
.

This is now a single variable function, so we can take its derivative to find the critical points:

V ′ =
36− 9x2

4
.

Setting that to 0 and solving gives us that 9x2 = 36, and so x2 = 4 and thus x = ±2. Of course,
dimensions must be positive, so x = 2. We can check that this really is a local maximum, because
V ′ is positive when x < 2 and negative when x > 2, and since we only get a single local maximum,
it must be an absolute maximum. To find the corresponding y-value, we go back to the equation
that 4xy+ 3x2 = 36 and plug 2 in for x, giving us that 8y+ 12 = 36, which we solve to get y = 3.
Finally, to find the maximum volume, we just substitute our x and y values into V = x2y to get
that V = (2)(2)(3) = 12 cubic feet.

16. Let f(x) = x3 + 4x− 7.

(a) Use the Intermediate Value Theorem to show that f(x) has at least one root.

First of all, f is a polynomial, and so it is continuous. It is really important to say this,
because otherwise the Intermediate Value Theorem does not apply! We note that
f(0) = −7 and f(2) = 9, and so f has both negative and positive outputs. Then, since
f(0) < 0 < f(2), the Intermediate Value Theorem says that for some c such that 0 < c < 2,
we have f(c) = 0. In other words, f(x) has a root on the interval (0, 2).



(b) Use the Mean Value Theorem or Rolle’s Theorem to show that f(x) has at most one root.

Since f is a polynomial, it is continuous and differentiable everywhere, and so Rolle’s Theorem
applies. Suppose that f(x) has two or more roots, and pick two of them, say x = a and x = b.
In other words, f(a) = f(b) = 0. Then by Rolle’s Theorem, f ′(c) = 0 for some value of c.
On the other hand, we note that f ′(x) = 3x2 + 4, and therefore, f ′(x) ≥ 4 for all x. Then
it cannot happen that f ′(c) = 0, and having arrived at a contradiction, that means that our
assumption was wrong. So f(x) does not have two or more roots; in other words, it has at
most 1 root.

17. Let g(x) = ex + x+ 2.

(a) Use the Intermediate Value Theorem to show that g(x) has at least one root.

The function g(x) is the sum of ex and x+ 2, both of which we know to be continuous, and
thus g is itself continuous. So we may apply the Intermediate Value Theorem. We note that
g(−10) = e−10−10 + 2 = e−10−8, and since e−10 = 1/e10, that part is a very small number,
and so e−10 − 8 is negative. We also note that g(0) = e0 + 0 + 2 = 1 + 0 + 2 = 3. Therefore,
g(−10) < 0 < g(0). Thus, the Intermediate Value Theorem says that for some c such that
−10 < c < 0, we have g(c) = 0. In other words, g(x) has a root on the interval (−10, 0).

(b) Use the Mean Value Theorem or Rolle’s Theorem to show that g(x) has at most one root.

Again, g is the sum of ex and x+2, both of which we know to be continuous and differentiable,
and so Rolle’s Theorem applies. Suppose that g(x) has two or more roots, and pick two of
them, say x = a and x = b. In other words, g(a) = g(b) = 0. Then by Rolle’s Theorem,
g′(c) = 0 for some value of c. On the other hand, we note that g′(x) = ex + 1, and since ex is
always positive, g′(x) ≥ 1 for all x. Then it cannot happen that g′(c) = 0, and having arrived
at a contradiction, that means that our assumption was wrong. So g(x) does not have two
or more roots; in other words, it has at most 1 root.

18. A spherical soap bubble is slowly shrinking. If its surface area is decreasing at a rate of 50 square
millimeters per second, how quickly is the radius decreasing when the surface area is 1000 square
millimeters?

The surface area of a sphere is related to the radius by the equation S = 4πr2. We are told that
the surface area is decreasing by 50 square millimeters per second, which means that dS/dt = −50.
Our goal is to find dr/dt, and the way we find how dS/dt and dr/dt are related is to take the
derivative of both sides of S = 4πr2 with respect to t. On the left, we get dS/dt, and on the
right we get 8πr drdt . Therefore, dr/dt = dS

dt ·
1

8πr . To finish this, we need to know what value
of r to use. We want dr/dt when S = 1000, and using the equation S = 4πr2 we get that
r =

√
1000/(4π) =

√
250/π. Thus, we get:

dr

dt
= −50 · 1

8π
√

250/π
=

−50

40
√

10π
=
−
√

10

8
√
π
.

19. A car drives along an elliptical track. The track can be modeled by the equation x2 + 5y2 = 14,
where x and y are measured in kilometers of distance from the center of the track. As the car
passes the point (3, 1), the x-coordinate is increasing at a rate of 1.5 km/min. How quickly is the
y-coordinate changing at that point?

To find how dx/dt and dy/dt are related, we take the derivative of the given equation by t on both
sides, yielding

2x
dx

dt
+ 10y

dy

dt
= 0.



Since x is increasing by 1.5 km/min, we have dx/dt = 1.5, and it was given that (x, y) = (3, 1), so
substituting all that information yields

2(3)(1.5) + (10)(1)
dy

dt
= 0,

and thus dy/dt = −9/10.

20. Find the area of the region bounded by the curves y = 2x2 and y = 4 + x2.

First, let us find the points of intersection. Setting the two equations equal to each other and
solving gives us 2x2 = 4 + x2, and so x2 = 4, from which it follows that x = ±2. Those will be
our bounds of integration. Now, to find the area between two curves, we need to integrate (top
minus bottom). In this range, y = 4 + x2 is the larger function; for example, when x = 0 it yields
4 whereas 2x2 only gives 0. So we get∫ 2

−2

(
(4 + x2)− 2x2

)
dx =

∫ 2

−2
(4− x2) dx.

To solve that, we start by finding an antiderivative of the inside, and we get 4x − x3

3 . Then we
plug in 2 and −2 and subtract the two answers. This gives us

(4(2)− 23

3
)− (4(−2)− (−2)3

3
) = (8− 8

3
)− (−8 +

8

3
) =

32

3
.

21. Find the area of the region bounded by the curves y = ex, y = x2, x = 0, and x = 2.

In the given region, ex is always bigger than x2, and so when we do (top minus bottom) we will
get ex − x2. The range of x-values is just 0 to 2, the lines that were given. So we get∫ 2

0

(ex − x2) dx = ex − x3

3
|20= (e2 − 23

3
)− (e0 − 03

3
) = e2 − 11

3
.

22. Consider the region bounded by the curves y = 1− x2 and y = 0. What is the volume of the solid
obtained by rotating this region about the line y = 0?

The curve y = 1−x2 is an upside-down parabola with its vertex at y = 1, and so the region is this
sort of ”hill” shape. When we rotate that around the line y = 0, the the vertical cross-sections
are discs. To find the volume, we need to integrate πr2, where r is the radius of these discs, as
a function of x. For a fixed x-value, the disc we get has its center on the x-axis (the line y = 0,
around which we are rotating the region), and the top of the disc will be on the curve y = 1− x2.
Therefore, the radius of the disc is r = 1 − x2. We also need to find the limits for our integral,
which we get by finding the x-values that are furthest to the left and to the right of our region. We
do that by solving for the points of intersection of y = 1 − x2 and y = 0; setting those equations
equal and solving yields x = ±1. Thus, the integral we need to solve is∫ 1

−1
π(1− x2)2 dx.

To integrate that, we first multiply out (1− x2)2, yielding 1− 2x2 + x4. So, we get∫ 1

−1
π(1−2x2+x4) dx = π(x− 2x3

3
+
x5

5
) |1−1= π(1− 2

3
+

1

5
)−π(−1+

2

3
− 1

5
) = π(2− 4

3
+

2

5
) =

16π

15
.



23. Consider the region bounded by the curves y = x2 and x = y2. What is the volume of the solid
obtained by rotating this region about the line y = 0?

This time, when we rotate the region about the x-axis (the line y = 0), the vertical cross-sections
are washers: discs with holes in the middle. Let us rewrite x = y2 as y =

√
x; then our region

has y = x2 as its bottom boundary and y =
√
x as its top boundary. To find the volume of the

resulting solid, we need to integrate πr2o−πr2i , where ri is the inner radius (the radius of the hole),
and ro is the outer radius (the radius of the entire thing). Each washer has its center at the x-axis,
and the highest point of the hole is given by x2. The highest point of the entire washer is given
by
√
x. So we have that ri = x2 and ro =

√
x. Now, since the curves y = x2 and y =

√
x intersect

at x = 0 and x = 1, those form our bounds of integration. Thus, we get∫ 1

0

(π(
√
x)2 − π(x2)2) dx =

∫ 1

0

(πx− πx4) dx =
πx2

2
− πx5

5
|10=

π

2
− π

5
=

3π

10
.


