Symplectic geometry in degree 2

Henrique Bursztyn, IMPA

MCA 2013, Guanajuato

Outline:

- 1. Motivation: Generalized (complex) geometry...
- 2. N-manifolds
- 3. Symplectic *N*-manifolds
- 4. Hamiltonians
- 5. Building a dictionary
- 6. Applications

"Degenerate" symplectic geometry...

"Degenerate" symplectic geometry...

Poisson structures

"Degenerate" symplectic geometry...

- Poisson structures
- ♦ Dirac structures ['1990]

"Degenerate" symplectic geometry...

- Poisson structures
- ♦ Dirac structures ['1990]
- ♦ Generalized (complex, Kähler) geometry ['2003]

"Degenerate" symplectic geometry...

- Poisson structures
- ♦ Dirac structures ['1990]
- ♦ Generalized (complex, Kähler) geometry ['2003]

Geometry in terms of

$$\mathbb{T}M := TM \oplus T^*M$$
,

including "twists" $H \in \Omega^3_{cl}(M)$.

"Degenerate" symplectic geometry...

- Poisson structures
- Dirac structures ['1990]
- ♦ Generalized (complex, Kähler) geometry ['2003]

Geometry in terms of

$$\mathbb{T}M := TM \oplus T^*M,$$

including "twists" $H \in \Omega^3_{cl}(M)$.

More intrinsically: Courant algebroids

The standard Courant algebroid

 $\mathbb{T} M = TM \oplus T^*M$

The standard Courant algebroid

$$\mathbb{T}M = TM \oplus T^*M$$

Pairing:
$$\langle (X, \alpha), (Y, \beta) \rangle = \beta(X) + \alpha(Y)$$

Anchor map: $p_T : \mathbb{T}M \to TM$

Courant bracket: $[(X, \alpha), (Y, \beta)] = ([X, Y], \mathcal{L}_X \beta - i_Y d\alpha)$

The standard Courant algebroid

$$\mathbb{T}M = TM \oplus T^*M$$

Pairing:
$$\langle (X, \alpha), (Y, \beta) \rangle = \beta(X) + \alpha(Y)$$

Anchor map: $p_T : \mathbb{T}M \to TM$

Courant bracket: $[(X, \alpha), (Y, \beta)] = ([X, Y], \mathcal{L}_X \beta - i_Y d\alpha)$

Symmetries:
$$\operatorname{Diff}(M) \ltimes \Omega^2_{cl}(M)$$
, $\begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix}$

Dirac structures: (Courant, Weinstein, 1990)

Subbundle $L \subset \mathbb{T}M$,

- $ightharpoonup L = L^{\perp}$
- $\blacktriangleright \ \llbracket \Gamma(L), \Gamma(L) \rrbracket \subset \Gamma(L)$

Dirac structures: (Courant, Weinstein, 1990)

Subbundle $L \subset \mathbb{T}M$,

- $ightharpoonup L = L^{\perp}$
- $\blacktriangleright \ \llbracket \Gamma(L), \Gamma(L) \rrbracket \subset \Gamma(L)$

▶
$$L = \operatorname{graph}(\omega)$$
, $\omega : TM \to T^*M$, $d\omega = 0$

Dirac structures: (Courant, Weinstein, 1990)

Subbundle $L \subset \mathbb{T}M$,

- $L = L^{\perp}$
- $\blacktriangleright \ \llbracket \Gamma(L), \Gamma(L) \rrbracket \subset \Gamma(L)$

- ► $L = \operatorname{graph}(\omega)$, $\omega : TM \to T^*M$, $d\omega = 0$
- $ightharpoonup L = \operatorname{graph}(\pi), \quad \pi: T^*M \to TM, \qquad [\pi, \pi] = 0$

Dirac structures: (Courant, Weinstein, 1990)

Subbundle $L \subset \mathbb{T}M$,

- $L = L^{\perp}$
- $\blacktriangleright \ \llbracket \Gamma(L), \Gamma(L) \rrbracket \subset \Gamma(L)$

- ► $L = \operatorname{graph}(\omega)$, $\omega : TM \to T^*M$, $d\omega = 0$
- $ightharpoonup L = \operatorname{graph}(\pi), \quad \pi: T^*M \to TM, \qquad [\pi, \pi] = 0$
- Cartan-Dirac on Lie groups...

$$\mathcal{J}: \mathbb{T}M \to \mathbb{T}M, \quad \mathcal{J}^2 = -Id,$$

- ▶ $\mathcal{J} \in O(\mathbb{T}M)$,
- $ightharpoonup N_{\mathcal{J}} \equiv 0$

$$\mathcal{J}: \mathbb{T}M \to \mathbb{T}M, \quad \mathcal{J}^2 = -Id,$$

- ▶ $\mathcal{J} \in O(\mathbb{T}M)$,
- $N_{\mathcal{J}} \equiv 0$

$$\begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix}$$

$$\mathcal{J}: \mathbb{T}M \to \mathbb{T}M, \quad \mathcal{J}^2 = -Id,$$

- ▶ $\mathcal{J} \in O(\mathbb{T}M)$,
- $N_{.7} \equiv 0$

$$\begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} -J & 0 \\ 0 & J^* \end{pmatrix}$$

$$\mathcal{J}: \mathbb{T}M \to \mathbb{T}M, \quad \mathcal{J}^2 = -Id,$$

- $ightharpoonup \mathcal{J} \in O(\mathbb{T}M),$
- $N_{.7} \equiv 0$

$$\begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix} \qquad \begin{pmatrix} -J & 0 \\ 0 & J^* \end{pmatrix}$$

$$\begin{pmatrix} -J & 0 \\ 0 & J^* \end{pmatrix}$$

$$\begin{pmatrix} A & \pi \\ \sigma & -A^* \end{pmatrix}$$

$$\mathcal{J}: \mathbb{T}M \to \mathbb{T}M, \quad \mathcal{J}^2 = -Id,$$

- $ightharpoonup \mathcal{J} \in O(\mathbb{T}M)$,
- $N_{\mathcal{J}} \equiv 0$

Examples:

$$\begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix} \qquad \begin{pmatrix} -J & 0 \\ 0 & J^* \end{pmatrix} \qquad \begin{pmatrix} A & \pi \\ \sigma & -A^* \end{pmatrix}$$

More: Generalized Kähler structures (= bihermitian geometry)

 $E \rightarrow M$ vector bundle,

 $E \rightarrow M$ vector bundle,

 $\langle \cdot, \cdot \rangle$ "inner product",

 $E \rightarrow M$ vector bundle,

 $\langle \cdot, \cdot \rangle \text{ "inner product", } \rho : E \to \mathit{TM}, \quad \llbracket \cdot, \cdot \rrbracket \text{ on } \Gamma(E),$

E o M vector bundle, $\langle \cdot, \cdot \rangle$ "inner product", $\rho : E o TM$, $\llbracket \cdot, \cdot \rrbracket$ on $\Gamma(E)$, $\Diamond \llbracket e_1, \llbracket e_2, e_3 \rrbracket \rrbracket = \llbracket \llbracket e_1, e_2 \rrbracket, e_3 \rrbracket + \llbracket e_2, \llbracket e_1, e_3 \rrbracket \rrbracket$ $\Diamond \llbracket e_1, fe_2 \rrbracket = f \llbracket e_1, e_2 \rrbracket + (\mathcal{L}_{\rho(e_1)} f) e_2$

 $\diamond \ \mathcal{L}_{o(e)}\langle e_1, e_2 \rangle = \langle \llbracket e, e_1 \rrbracket, e_2 \rangle + \langle e_1, \llbracket e, e_2 \rrbracket \rangle$

 $E \rightarrow M$ vector bundle. $\langle \cdot, \cdot \rangle$ "inner product", $\rho : E \to TM$, $\llbracket \cdot, \cdot \rrbracket$ on $\Gamma(E)$, $\diamond [e_1, [e_2, e_3]] = [[e_1, e_2], e_3] + [e_2, [e_1, e_3]]$ $\diamond [e_1, fe_2] = f[e_1, e_2] + (\mathcal{L}_{o(e_1)}f)e_2$ $\diamond \mathcal{L}_{o(e)}\langle e_1, e_2 \rangle = \langle \llbracket e, e_1 \rrbracket, e_2 \rangle + \langle e_1, \llbracket e, e_2 \rrbracket \rangle$ $\phi \rho([e_1, e_2]) = [\rho(e_1), \rho(e_2)]$ $\diamond \llbracket e, e \rrbracket = \frac{1}{2} \rho^* d \langle e, e \rangle$

$$\begin{split} E &\rightarrow \textit{M} \text{ vector bundle,} \\ &\langle \cdot, \cdot \rangle \text{ "inner product",} \quad \rho : E \rightarrow \textit{TM,} \quad \llbracket \cdot, \cdot \rrbracket \text{ on } \Gamma(E), \\ &\diamond \llbracket e_1, \llbracket e_2, e_3 \rrbracket \rrbracket = \llbracket \llbracket e_1, e_2 \rrbracket, e_3 \rrbracket + \llbracket e_2, \llbracket e_1, e_3 \rrbracket \rrbracket \\ &\diamond \llbracket e_1, fe_2 \rrbracket = f \llbracket e_1, e_2 \rrbracket + (\mathcal{L}_{\rho(e_1)} f) e_2 \\ &\diamond \mathcal{L}_{\rho(e)} \langle e_1, e_2 \rangle = \langle \llbracket e, e_1 \rrbracket, e_2 \rangle + \langle e_1, \llbracket e, e_2 \rrbracket \rangle \\ &\diamond \rho(\llbracket e_1, e_2 \rrbracket) = [\rho(e_1), \rho(e_2)] \\ &\diamond \llbracket e, e \rrbracket = \frac{1}{2} \rho^* d \langle e, e \rangle \end{split}$$

Exact: $T^*M \rightarrow E \rightarrow TM$

- B., Cavalcanti, Gualtieri: Reduction of Courant algebroids and generalized complex structures, Adv. in Math. (2007).
- B., Cavalcanti, Gualtieri: *Generalized Kahler and hyper-Kahler quotients*, Contemp. Math. (2008).
- B., Cavalcanti, Gualtieri: Generalized Kahler geometry of instanton moduli spaces, Arxiv: 1203.2385.

B., Cavalcanti, Gualtieri: Reduction of Courant algebroids and generalized complex structures, Adv. in Math. (2007).

B., Cavalcanti, Gualtieri: *Generalized Kahler and hyper-Kahler quotients*, Contemp. Math. (2008).

B., Cavalcanti, Gualtieri: Generalized Kahler geometry of instanton moduli spaces, Arxiv: 1203.2385.

New features:

Extra symmetries: $\Omega_{cl}^2(M)...$

B., Cavalcanti, Gualtieri: Reduction of Courant algebroids and generalized complex structures, Adv. in Math. (2007).

B., Cavalcanti, Gualtieri: *Generalized Kahler and hyper-Kahler quotients*, Contemp. Math. (2008).

B., Cavalcanti, Gualtieri: Generalized Kahler geometry of instanton moduli spaces, Arxiv: 1203.2385.

New features:

Extra symmetries: $\Omega_{cl}^2(M)...$

Lifted actions: $\mathfrak{g} \to \Gamma(TM \oplus T^*M)...$ [closed equivariant extension]

B., Cavalcanti, Gualtieri: Reduction of Courant algebroids and generalized complex structures, Adv. in Math. (2007).

B., Cavalcanti, Gualtieri: *Generalized Kahler and hyper-Kahler quotients*, Contemp. Math. (2008).

B., Cavalcanti, Gualtieri: Generalized Kahler geometry of instanton moduli spaces, Arxiv: 1203.2385.

New features:

Extra symmetries: $\Omega_{cl}^2(M)...$

Lifted actions: $\mathfrak{g} \to \Gamma(TM \oplus T^*M)...$ [closed equivariant extension]

Moment maps: $\mu: M \to \mathfrak{h}^*$, \mathfrak{h} a G-module...

There is a trade-off:

There is a trade-off:

"Unfamiliar" geometry on "familiar" spaces

versus

"Familiar" geometry on "unfamiliar" spaces

There is a trade-off:

"Unfamiliar" geometry on "familiar" spaces

versus

"Familiar" geometry on "unfamiliar" spaces

We will see:

Generalized geometry is symplectic geometry on "deg 2 manifolds"

2. N-manifolds

Degree 0: Usual manifold M, smooth functions $\mathcal{A}=C^\infty(M)...$ locally $\cong C^\infty(U),\ U\subset\mathbb{R}^{d_0}$ open.

Degree 0: Usual manifold M, smooth functions $\mathcal{A}=C^\infty(M)...$ locally $\cong C^\infty(U),\ U\subset\mathbb{R}^{d_0}$ open.

Degree 1: Sheaf of graded algebras $\mathcal A$ over M, locally $\cong C^\infty(U)[e^1,\ldots,e^{d_1}],\ \deg(e^\mu)=1.$

Degree 0: Usual manifold M, smooth functions $\mathcal{A}=C^\infty(M)...$ locally $\cong C^\infty(U),\ U\subset\mathbb{R}^{d_0}$ open.

Degree 1: Sheaf of graded algebras $\mathcal A$ over M, locally $\cong C^\infty(U)[e^1,\dots,e^{d_1}],\ \deg(e^\mu)=1.$

Degree 2: Sheaf of graded algebras A over M,

- Degree 0: Usual manifold M, smooth functions $\mathcal{A} = C^{\infty}(M)$... locally $\cong C^{\infty}(U)$, $U \subset \mathbb{R}^{d_0}$ open.
- Degree 1: Sheaf of graded algebras $\mathcal A$ over M, $\operatorname{locally} \cong C^\infty(U)[e^1,\dots,e^{d_1}],\ \deg(e^\mu)=1.$
- Degree 2: Sheaf of graded algebras $\mathcal A$ over M, locally $\cong C^\infty(U)[e^1,\ldots,e^{d_1},p^1,\ldots,p^{d_2}],$ $\deg(e^\mu)=1,\ \deg(p^I)=2.$

- Degree 0: Usual manifold M, smooth functions $\mathcal{A} = C^{\infty}(M)$... locally $\cong C^{\infty}(U)$, $U \subset \mathbb{R}^{d_0}$ open.
- Degree 1: Sheaf of graded algebras $\mathcal A$ over M, $\operatorname{locally} \cong C^\infty(U)[e^1,\dots,e^{d_1}],\ \deg(e^\mu)=1.$
- Degree 2: Sheaf of graded algebras $\mathcal A$ over M, locally $\cong C^\infty(U)[e^1,\ldots,e^{d_1},p^1,\ldots,p^{d_2}]$, $\deg(e^\mu)=1,\ \deg(p^I)=2.$

$$\mathcal{M} = (M, \mathcal{A}), \quad \mathcal{A}_j = \text{degree } j \text{ "functions"} \dots \quad (\mathcal{A}_0 = C^{\infty}(M))$$

- Degree 0: Usual manifold M, smooth functions $\mathcal{A}=C^{\infty}(M)...$ locally $\cong C^{\infty}(U),\ U\subset\mathbb{R}^{d_0}$ open.
- Degree 1: Sheaf of graded algebras $\mathcal A$ over M, $\operatorname{locally} \cong C^\infty(U)[e^1,\dots,e^{d_1}],\ \deg(e^\mu)=1.$
- Degree 2: Sheaf of graded algebras \mathcal{A} over M, locally $\cong C^{\infty}(U)[e^1,\ldots,e^{d_1},p^1,\ldots,p^{d_2}]$, $\deg(e^{\mu})=1,\ \deg(p^I)=2.$

$$\mathcal{M} = (M, \mathcal{A}), \quad \mathcal{A}_j = \text{degree } j \text{ "functions"} \dots \quad (\mathcal{A}_0 = \mathcal{C}^{\infty}(M))$$

Local "coordinates" (x^i, e^{μ}, p^I) , dimension $(d_0|d_1|d_2)\dots$

- Degree 0: Usual manifold M, smooth functions $\mathcal{A} = C^{\infty}(M)$... locally $\cong C^{\infty}(U)$, $U \subset \mathbb{R}^{d_0}$ open.
- Degree 1: Sheaf of graded algebras $\mathcal A$ over M, $\operatorname{locally} \cong C^\infty(U)[e^1,\dots,e^{d_1}],\ \deg(e^\mu)=1.$
- Degree 2: Sheaf of graded algebras \mathcal{A} over M, locally $\cong C^{\infty}(U)[e^1,\ldots,e^{d_1},p^1,\ldots,p^{d_2}]$, $\deg(e^{\mu})=1,\ \deg(p^I)=2.$
- $\mathcal{M}=(M,\mathcal{A}),\quad \mathcal{A}_j=$ degree j "functions" ... $(\mathcal{A}_0=C^\infty(M))$ Local "coordinates" (x^i,e^μ,p^I) , dimension $(d_0|d_1|d_2)$... Differential calculus: vector fields (derivations), submanifolds (ideals) ...

 \mathcal{M} , degree 1 $\stackrel{1-1}{\longleftrightarrow}$ $(E \to M)$ vector bundle

$$\mathcal{M}$$
, degree 1 $\stackrel{1-1}{\longleftrightarrow}$ $(E \to M)$ vector bundle

Correspondence: $\mathcal{A}_1 = \Gamma(E^*)$ and $\mathcal{A} = \Gamma(\wedge E^*)$

$$\mathcal{M}$$
, degree 1 $\stackrel{1-1}{\longleftrightarrow}$ $(E \to M)$ vector bundle

Correspondence: $\mathcal{A}_1 = \Gamma(E^*)$ and $\mathcal{A} = \Gamma(\wedge E^*)$

$$\mathcal{M}$$
, degree 2 $\stackrel{1-1}{\longleftrightarrow}$ $(E \to M, F \to M, \phi : F \twoheadrightarrow \wedge^2 E)$

$$\mathcal{M}$$
, degree 1 $\stackrel{1-1}{\longleftrightarrow}$ $(E \to M)$ vector bundle

Correspondence: $\mathcal{A}_1 = \Gamma(E^*)$ and $\mathcal{A} = \Gamma(\wedge E^*)$

$$\mathcal{M}$$
, degree 2 $\stackrel{1-1}{\longleftrightarrow}$ $(E \to M, F \to M, \phi : F \to \wedge^2 E)$

Correspondence: $A_1 = \Gamma(E^*)$, $A_2 = \Gamma(F^*)$ and $A = \Gamma(\land E^*) \otimes \Gamma(SF^*)/I$

$$\mathcal{M}$$
, degree 1 $\stackrel{1-1}{\longleftrightarrow}$ $(E \to M)$ vector bundle

Correspondence: $\mathcal{A}_1 = \Gamma(E^*)$ and $\mathcal{A} = \Gamma(\wedge E^*)$

$$\mathcal{M}$$
, degree 2 $\stackrel{1-1}{\longleftrightarrow}$ $(E \to M, F \to M, \phi : F \to \wedge^2 E)$

Correspondence:
$$A_1 = \Gamma(E^*)$$
, $A_2 = \Gamma(F^*)$ and $A = \Gamma(\land E^*) \otimes \Gamma(SF^*)/I$

Example: deg. 1 vector field Q, $[Q, Q] = 2Q^2 = 0$

$$\mathcal{M} = (M, \mathcal{A})$$
 N-manifold, degree r $(r = 1, 2)$.

$$\mathcal{M} = (M, \mathcal{A})$$
 N-manifold, degree r $(r = 1, 2)$.

Symplectic structure: Poisson bracket

$$\{\cdot,\cdot\}:\mathcal{A}_k\times\mathcal{A}_l\to\mathcal{A}_{k+l-r},$$

$$\mathcal{M} = (M, \mathcal{A})$$
 N-manifold, degree r $(r = 1, 2)$.

Symplectic structure: Poisson bracket

$$\{\cdot,\cdot\}:\mathcal{A}_k\times\mathcal{A}_l\to\mathcal{A}_{k+l-r},$$

- ${a,b} = -(-1)^{(|a|+r)(|b|+r)}{b,a},$
- ${a,bc} = {a,b}c + (-1)^{(|a|+r)|b|}b{a,c}$
- $\{\{a,b\},c\}=\{a,\{b,c\}\}\}-(-1)^{(|a|+r)(|b|+r)}\{b,\{a,c\}\},$

NON-degenerate.

$$\mathcal{M} = (M, \mathcal{A})$$
 N-manifold, degree r $(r = 1, 2)$.

Symplectic structure: Poisson bracket

$$\{\cdot,\cdot\}:\mathcal{A}_k\times\mathcal{A}_l\to\mathcal{A}_{k+l-r},$$

- ${a,b} = -(-1)^{(|a|+r)(|b|+r)}{b,a},$
- ${a,bc} = {a,b}c + (-1)^{(|a|+r)|b|}b{a,c}$
- $\{\{a,b\},c\}=\{a,\{b,c\}\}-(-1)^{(|a|+r)(|b|+r)}\{b,\{a,c\}\},$

NON-degenerate.

Hamiltonian vector fields...

$$\mathcal{M} = (M, \mathcal{A})$$
 N-manifold, degree r $(r = 1, 2)$.

Symplectic structure: Poisson bracket

$$\{\cdot,\cdot\}:\mathcal{A}_k\times\mathcal{A}_l\to\mathcal{A}_{k+l-r},$$

- ${a,b} = -(-1)^{(|a|+r)(|b|+r)}{b,a},$
- ${a,bc} = {a,b}c + (-1)^{(|a|+r)|b|}b{a,c}$
- $\{\{a,b\},c\}=\{a,\{b,c\}\}\}-(-1)^{(|a|+r)(|b|+r)}\{b,\{a,c\}\},$

NON-degenerate.

Hamiltonian vector fields...

Following Severa, Roytenberg, Vaintrob...

Beginning the dictionary...

♦ Degree 1:

$$\{\mathcal{A}_0,\mathcal{A}_0\}=0,\ \{\mathcal{A}_1,\mathcal{A}_0\}\subset\mathcal{A}_0,\ \{\mathcal{A}_1,\mathcal{A}_1\}\subset\mathcal{A}_1.$$

♦ Degree 1:

$$\{\mathcal{A}_0,\mathcal{A}_0\}=0,\ \{\mathcal{A}_1,\mathcal{A}_0\}\subset\mathcal{A}_0,\ \{\mathcal{A}_1,\mathcal{A}_1\}\subset\mathcal{A}_1.$$

Consequence:
$$(A_1, \{\cdot, \cdot\}) = (\mathcal{X}^1(M), [\cdot, \cdot])$$
, and $(A, \{\cdot, \cdot\}) = (\mathcal{X}^{\bullet}(M), [\cdot, \cdot])$

♦ Degree 1:

$$\{\mathcal{A}_0,\mathcal{A}_0\}=0,\ \{\mathcal{A}_1,\mathcal{A}_0\}\subset\mathcal{A}_0,\ \{\mathcal{A}_1,\mathcal{A}_1\}\subset\mathcal{A}_1.$$

 $\text{Consequence:} \quad (\mathcal{A}_1,\{\cdot,\cdot\}) = (\mathcal{X}^1(\mathit{M}),[\cdot,\cdot]) \text{, and } (\mathcal{A},\{\cdot,\cdot\}) = (\mathcal{X}^\bullet(\mathit{M}),[\cdot,\cdot])$

Theorem: (\mathcal{M}, ω) deg. $1 \rightleftharpoons E = T^*M$

♦ Degree 1:

$$\{\mathcal{A}_0,\mathcal{A}_0\}=0,\ \{\mathcal{A}_1,\mathcal{A}_0\}\subset\mathcal{A}_0,\ \{\mathcal{A}_1,\mathcal{A}_1\}\subset\mathcal{A}_1.$$

Consequence: $(A_1,\{\cdot,\cdot\})=(\mathcal{X}^1(M),[\cdot,\cdot])$, and $(A,\{\cdot,\cdot\})=(\mathcal{X}^{\bullet}(M),[\cdot,\cdot])$

Theorem: (\mathcal{M}, ω) deg. $1 \rightleftharpoons E = T^*M$

♦ Degree 2:

$$\begin{split} \{\mathcal{A}_0,\mathcal{A}_0\} &= 0, \ \{\mathcal{A}_1,\mathcal{A}_0\} = 0, \ \{\mathcal{A}_1,\mathcal{A}_1\} = \mathcal{A}_0. \\ \{\mathcal{A}_2,\mathcal{A}_0\} &\subset \mathcal{A}_0, \ \{\mathcal{A}_2,\mathcal{A}_1\} \subset \mathcal{A}_1, \ \{\mathcal{A}_2,\mathcal{A}_2\} \subset \mathcal{A}_2. \end{split}$$

♦ Degree 1:

$$\{\mathcal{A}_0,\mathcal{A}_0\}=0,\ \{\mathcal{A}_1,\mathcal{A}_0\}\subset\mathcal{A}_0,\ \{\mathcal{A}_1,\mathcal{A}_1\}\subset\mathcal{A}_1.$$

 $\text{Consequence:} \quad (\mathcal{A}_1,\{\cdot,\cdot\}) = (\mathcal{X}^1(M),[\cdot,\cdot]) \text{, and } (\mathcal{A},\{\cdot,\cdot\}) = (\mathcal{X}^{\bullet}(M),[\cdot,\cdot])$

Theorem: (\mathcal{M}, ω) deg. $1 \rightleftharpoons E = T^*M$

♦ Degree 2:

$$\begin{split} \{\mathcal{A}_0,\mathcal{A}_0\} &= 0, \ \{\mathcal{A}_1,\mathcal{A}_0\} = 0, \ \{\mathcal{A}_1,\mathcal{A}_1\} = \mathcal{A}_0. \\ \{\mathcal{A}_2,\mathcal{A}_0\} &\subset \mathcal{A}_0, \ \{\mathcal{A}_2,\mathcal{A}_1\} \subset \mathcal{A}_1, \ \{\mathcal{A}_2,\mathcal{A}_2\} \subset \mathcal{A}_2. \end{split}$$

Consequence: $A_1 = \Gamma(E)$, and $(A_2, \{\cdot, \cdot\})$ is Atiyah algebroid of $(E, \langle \cdot, \cdot \rangle)$

♦ Degree 1:

$$\{\mathcal{A}_0,\mathcal{A}_0\}=0,\ \{\mathcal{A}_1,\mathcal{A}_0\}\subset\mathcal{A}_0,\ \{\mathcal{A}_1,\mathcal{A}_1\}\subset\mathcal{A}_1.$$

 $\text{Consequence:} \quad (\mathcal{A}_1,\{\cdot,\cdot\}) = (\mathcal{X}^1(M),[\cdot,\cdot]) \text{, and } (\mathcal{A},\{\cdot,\cdot\}) = (\mathcal{X}^{\bullet}(M),[\cdot,\cdot])$

Theorem: (\mathcal{M}, ω) deg. $1 \rightleftharpoons E = T^*M$

♦ Degree 2:

$$\begin{split} \{\mathcal{A}_0,\mathcal{A}_0\} &= 0, \ \{\mathcal{A}_1,\mathcal{A}_0\} = 0, \ \{\mathcal{A}_1,\mathcal{A}_1\} = \mathcal{A}_0. \\ \{\mathcal{A}_2,\mathcal{A}_0\} &\subset \mathcal{A}_0, \ \{\mathcal{A}_2,\mathcal{A}_1\} \subset \mathcal{A}_1, \ \{\mathcal{A}_2,\mathcal{A}_2\} \subset \mathcal{A}_2. \end{split}$$

Consequence: $A_1 = \Gamma(E)$, and $(A_2, \{\cdot, \cdot\})$ is Atiyah algebroid of $(E, \langle \cdot, \cdot \rangle)$

Theorem: (\mathcal{M}, ω) deg. $2 \rightleftharpoons (E, \langle \cdot, \cdot \rangle)$

$$\mathcal{M}=(M,\mathcal{A})$$
 N-manifold, degree r $(r=1,2).$ $\Theta\in\mathcal{A}_{r+1},$ $\{\Theta,\Theta\}=0.$

$$\mathcal{M}=(M,\mathcal{A})$$
 N-manifold, degree r $(r=1,2)$. $\Theta\in\mathcal{A}_{r+1}, \quad \{\Theta,\Theta\}=0.$ \diamond Degree 1: $(\mathcal{A},\{\cdot,\cdot\})=(\mathcal{X}^{\bullet}(M),[\cdot,\cdot])$

$$\mathcal{M} = (M, \mathcal{A})$$
 N-manifold, degree r $(r = 1, 2)$.

$$\Theta \in \mathcal{A}_{r+1}$$
, $\{\Theta,\Theta\} = 0$.

$$\diamond \mathsf{Degree} \ 1: \quad (\mathcal{A}, \{\cdot, \cdot\}) = (\mathcal{X}^{\bullet}(M), [\cdot, \cdot])$$

Theorem: $\Theta \in \mathcal{A}_2$, $\{\Theta, \Theta\} = 0 \rightleftharpoons$ Poisson structure on M.

$$\{f,g\}_{M} = \{\{f,\Theta\},g\}$$

$$\mathcal{M} = (M, \mathcal{A})$$
 N-manifold, degree r $(r = 1, 2)$.

$$\Theta \in \mathcal{A}_{r+1}, \quad \{\Theta,\Theta\} = 0.$$

$$\diamond \ \mathsf{Degree} \ 1: \quad (\mathcal{A}, \{\cdot, \cdot\}) = (\mathcal{X}^{\bullet}(M), [\cdot, \cdot])$$

Theorem: $\Theta \in \mathcal{A}_2$, $\{\Theta, \Theta\} = 0 \Longrightarrow$ Poisson structure on M.

$$\{f,g\}_{M} = \{\{f,\Theta\},g\}$$

$$\diamond$$
 Degree 2: $(E, \langle \cdot, \cdot \rangle)$

$$\mathcal{M} = (M, \mathcal{A})$$
 N-manifold, degree r $(r = 1, 2)$.

$$\Theta \in \mathcal{A}_{r+1}$$
, $\{\Theta, \Theta\} = 0$.

$$\diamond$$
 Degree 1: $(\mathcal{A}, \{\cdot, \cdot\}) = (\mathcal{X}^{\bullet}(M), [\cdot, \cdot])$

Theorem: $\Theta \in \mathcal{A}_2$, $\{\Theta, \Theta\} = 0 \Longrightarrow \text{Poisson structure on } M$.

$$\{f,g\}_{M} = \{\{f,\Theta\},g\}$$

 \diamond Degree 2: $(E, \langle \cdot, \cdot \rangle)$

Theorem:
$$\Theta \in \mathcal{A}_3$$
, $\{\Theta, \Theta\} = 0 \Longrightarrow \text{Courant structure } \rho$, $[\![\cdot, \cdot]\!]$

$$\rho(e) \cdot f = \{ \{e, \Theta\}, f \}$$
$$[\![e_1, e_2]\!] = \{ \{e_1, \Theta\}, e_2 \}$$

Symplectic N-manifold (\mathcal{M},ω) , degree r, Hamiltonian $\Theta\in\mathcal{A}_{r+1}$, $\{\Theta,\Theta\}=0$.

Symplectic N-manifold (\mathcal{M},ω) , degree r, Hamiltonian $\Theta\in\mathcal{A}_{r+1}$, $\{\Theta,\Theta\}=0$.

♦ Degree 0: Symplectic manifolds

Symplectic N-manifold (\mathcal{M}, ω) , degree r, Hamiltonian $\Theta \in \mathcal{A}_{r+1}$, $\{\Theta, \Theta\} = 0$.

- ♦ Degree 0: Symplectic manifolds
- ♦ Degree 1: Poisson manifolds

Symplectic N-manifold (\mathcal{M}, ω) , degree r, Hamiltonian $\Theta \in \mathcal{A}_{r+1}$, $\{\Theta, \Theta\} = 0$.

- ♦ Degree 0: Symplectic manifolds
- ♦ Degree 1: Poisson manifolds
- ♦ Degree 2: Courant algebroids

Symplectic N-manifold (\mathcal{M}, ω) , degree r, Hamiltonian $\Theta \in \mathcal{A}_{r+1}$, $\{\Theta, \Theta\} = 0$.

- ♦ Degree 0: Symplectic manifolds
- ♦ Degree 1: Poisson manifolds
- ♦ Degree 2: Courant algebroids

and higher...

Symplectic N-manifold
$$(\mathcal{M}, \omega)$$
, degree r , Hamiltonian $\Theta \in \mathcal{A}_{r+1}$, $\{\Theta, \Theta\} = 0$.

- ♦ Degree 0: Symplectic manifolds
- ♦ Degree 1: Poisson manifolds
- ♦ Degree 2: Courant algebroids

and higher...

What is lagrangian/coisotropic submanifold? Hamiltonian action? GCS? etc...

$$(\mathcal{M}, \omega)$$
 (deg 2) symplectic *N*-manifold \rightleftharpoons $(E, \langle \cdot, \cdot \rangle)$

$$(\mathcal{M},\omega)$$
 (deg 2) symplectic *N*-manifold \rightleftharpoons $(E,\langle\cdot,\cdot\rangle)$

A submanifold $\mathcal{C}\hookrightarrow\mathcal{M}$ is coisotropic if $\{\mathcal{I}_\mathcal{C},\mathcal{I}_\mathcal{C}\}\subseteq\mathcal{I}_\mathcal{C}$

$$(\mathcal{M},\omega)$$
 (deg 2) symplectic *N*-manifold \rightleftharpoons $(E,\langle\cdot,\cdot\rangle)$

A submanifold $\mathcal{C} \hookrightarrow \mathcal{M}$ is coisotropic if $\{\mathcal{I}_{\mathcal{C}}, \mathcal{I}_{\mathcal{C}}\} \subseteq \mathcal{I}_{\mathcal{C}}$

Theorem:

Coisotropic
$$\mathcal{C} \hookrightarrow \mathcal{M} \stackrel{1-1}{\rightleftharpoons} (C, K, F, \nabla),$$

where

- $ightharpoonup C \hookrightarrow M$ submanifold
- ▶ $K \subset E|_C \to C$ vector bundle, $K \subset K^{\perp}$
- $ightharpoonup F \subset TC$ integrable distribution
- ightharpoonup
 abla flat, metric F-connection on $rac{K^{\perp}}{K}
 ightarrow C$

$$(\mathcal{M},\omega)$$
 (deg 2) symplectic *N*-manifold \rightleftharpoons $(E,\langle\cdot,\cdot\rangle)$

A submanifold $\mathcal{C}\hookrightarrow\mathcal{M}$ is coisotropic if $\{\mathcal{I}_\mathcal{C},\mathcal{I}_\mathcal{C}\}\subseteq\mathcal{I}_\mathcal{C}$

Theorem:

Coisotropic
$$\mathcal{C} \hookrightarrow \mathcal{M} \stackrel{1-1}{\rightleftharpoons} (C, K, F, \nabla),$$

where

- $ightharpoonup C \hookrightarrow M$ submanifold
- ▶ $K \subset E|_C \to C$ vector bundle, $K \subset K^{\perp}$
- $ightharpoonup F \subset TC$ integrable distribution
- ightharpoonup
 abla flat, metric F-connection on $rac{K^{\perp}}{K}
 ightarrow C$

Coisotropic reduction " \mathcal{C}/\sim " works when F is simple and ∇ has vanishing holonomy...

Let $\Theta \in \mathcal{A}_3$, $\{\Theta,\Theta\} = 0$ \implies Courant structure ρ , $\llbracket\cdot,\cdot
rbracket$.

Let $\Theta \in \mathcal{A}_3$, $\{\Theta, \Theta\} = 0$ \implies Courant structure ρ , $\llbracket \cdot, \cdot \rrbracket$.

Let $\mathcal{C} \subseteq \mathcal{M}$ be coisotropic.

 Θ is reducible if $\{\Theta, \mathcal{I}_{\mathcal{C}}\} \subseteq \mathcal{I}_{\mathcal{C}}$.

Let $\Theta \in \mathcal{A}_3$, $\{\Theta, \Theta\} = 0$ \implies Courant structure ρ , $\llbracket \cdot, \cdot \rrbracket$.

Let $\mathcal{C} \subseteq \mathcal{M}$ be coisotropic.

 Θ is reducible if $\{\Theta, \mathcal{I}_{\mathcal{C}}\} \subseteq \mathcal{I}_{\mathcal{C}}$.

Theorem: Θ is reducible if and only if

- $ho(K^{\perp}) \subseteq TC$,
- $ho(K) \subseteq F$,
- $\blacktriangleright \llbracket S_K, S_{K^{\perp}}^{\nabla} \rrbracket \subseteq S_K,$
- $\blacktriangleright [\rho(S_{\kappa^{\perp}}^{\nabla}), S_F] \subseteq S_F,$
- $\blacktriangleright \ \llbracket S_{\mathsf{K}^{\perp}}^{\nabla}, S_{\mathsf{K}^{\perp}}^{\nabla} \rrbracket \subseteq S_{\mathsf{K}^{\perp}}^{\nabla}.$

Let
$$\Theta \in \mathcal{A}_3$$
, $\{\Theta, \Theta\} = 0$ \implies Courant structure ρ , $\llbracket \cdot, \cdot \rrbracket$.

Let $\mathcal{C} \subseteq \mathcal{M}$ be coisotropic.

 Θ is reducible if $\{\Theta, \mathcal{I}_{\mathcal{C}}\} \subseteq \mathcal{I}_{\mathcal{C}}$.

Theorem: Θ is reducible if and only if

- $ho(K^{\perp}) \subseteq TC$,
- ▶ $\rho(K) \subseteq F$,
- $\blacktriangleright \llbracket S_K, S_{K^{\perp}}^{\nabla} \rrbracket \subseteq S_K,$
- $\blacktriangleright [\rho(S_{\kappa^{\perp}}^{\nabla}), S_F] \subseteq S_F,$
- $\blacktriangleright \ \llbracket S_{K^{\perp}}^{\nabla}, S_{K^{\perp}}^{\nabla} \rrbracket \subseteq S_{K^{\perp}}^{\nabla}.$

Corollary: coisotropic reduction of Courant algebroids.

5. Dictionary (in degree 2)

$(\mathcal{E},\langle\cdot,\cdot angle)$	$(\mathcal{M}, \{\cdot, \cdot\})$ deg. 2, symplectic N-manifold
Courant structure $\llbracket\cdot,\cdot rbracket$, $ ho$	$\Theta \in \mathcal{A}_3(\mathcal{M}), \{\Theta,\Theta\}=0$
$L \subset E _C, L = L^{\perp}$	$\mathcal{L}\subset\mathcal{M}$ Lagrangian submanifold
Dirac structure L (supp. on C)	${\cal L}$ Lagrangian submanifold, $\Theta _{\cal L}\equiv {\sf const.}$
(C,K,F, abla) such that	${\cal C}$ coisotropic submanifold, Θ reducible
gen. complex struc. ${\cal J}$	$\mathcal{J} \in \mathcal{A}_2(\mathcal{M}), \ \{\{\Theta,\mathcal{J}\},\mathcal{J}\} = -\Theta$

Actions (DGLAs), moment maps, MW reduction ...

6. Further developments and applications

"Coisotropic" reduction of Dirac, generalized complex...

6. Further developments and applications

- "Coisotropic" reduction of Dirac, generalized complex...
- ► Hamiltonian actions and moment map reduction (of Courant algebroids, Dirac/generalized complex structures...)

6. Further developments and applications

- "Coisotropic" reduction of Dirac, generalized complex...
- ► Hamiltonian actions and moment map reduction (of Courant algebroids, Dirac/generalized complex structures...)
- ► Homological methods (singular reduction)

Thank you

$$\mathcal{C} \hookrightarrow \mathcal{M}$$
 coisotropic \rightleftharpoons (C, K, F, ∇) .

 $\mathcal{C} \hookrightarrow \mathcal{M}$ coisotropic \rightleftharpoons $(\mathcal{C}, \mathcal{K}, \mathcal{F}, \nabla)$. **Proposition**: \mathcal{C} is Lagrangian \Leftrightarrow $\mathcal{K} = \mathcal{K}^{\perp}$, $\mathcal{F} = \mathcal{T}\mathcal{C}$.

$$\mathcal{C} \hookrightarrow \mathcal{M}$$
 coisotropic \rightleftharpoons (C, K, F, ∇) .
Proposition: \mathcal{C} is Lagrangian \Leftrightarrow $K = K^{\perp}$, $F = TC$.

It follows:

♦ Lagrangian submanifolds in $\mathcal{M} \stackrel{1-1}{\rightleftharpoons} (C, L)$, where $C \hookrightarrow M$ submanifold, $L \subset E|_C$ subbundle, $L = L^{\perp}$

$$\mathcal{C} \hookrightarrow \mathcal{M}$$
 coisotropic \implies $(\mathcal{C}, \mathcal{K}, \mathcal{F}, \nabla)$.
Proposition: \mathcal{C} is Lagrangian \Leftrightarrow $\mathcal{K} = \mathcal{K}^{\perp}$, $\mathcal{F} = \mathcal{T}\mathcal{C}$.

It follows:

- ♦ Lagrangian submanifolds in $\mathcal{M} \stackrel{1-1}{\rightleftharpoons} (C, L)$, where $C \hookrightarrow M$ submanifold, $L \subset E|_C$ subbundle, $L = L^{\perp}$
- \diamond Θ is reducible \iff $\rho(L) \subseteq TC$ and $\llbracket S_L, S_L \rrbracket \subseteq S_L$.

$$\mathcal{C}\hookrightarrow\mathcal{M}$$
 coisotropic \implies $(\mathcal{C},\mathcal{K},\mathcal{F},\nabla).$
Proposition: \mathcal{C} is Lagrangian \Leftrightarrow $\mathcal{K}=\mathcal{K}^{\perp},$ $\mathcal{F}=\mathcal{T}\mathcal{C}.$

It follows:

- ♦ Lagrangian submanifolds in $\mathcal{M} \stackrel{1-1}{\rightleftharpoons} (C, L)$, where $C \hookrightarrow M$ submanifold, $L \subset E|_C$ subbundle, $L = L^{\perp}$
- \diamond Θ is reducible \iff $\rho(L) \subseteq TC$ and $\llbracket S_L, S_L \rrbracket \subseteq S_L$.

Dirac structures (with support), Courant morphisms...