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1. Motivation

“Degenerate” symplectic geometry...

¢ Poisson structures
¢ Dirac structures ['1990]

o Generalized (complex, Kihler) geometry ['2003]

Geometry in terms of

™ :=TM & T*M,
including “twists” H € Q3 (M).

More intrinsically: Courant algebroids
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The standard Courant algebroid
™ =TM o T*M
Pairing: ((X.0), (Y. B)) = BX) +a(Y)
Anchor map: pr : TM — TM

Courant bracket:  [(X,a),(Y,B8)] = ([X, Y],LxB — iyda)

Symmetries: Diff(M) x Q2(M), (é (1)>
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Geometrical structures in terms of TM

Dirac structures: (Courant, Weinstein, 1990)

Subbundle L ¢ TM,
> L = LJ‘
» (L), T(L)] C (L)

Examples:
» L =graph(w), w:TM — T*M, dw=0
» L=graph(r), 7:T*M— TM, [r, 7] =0
» Cartan-Dirac on Lie groups...
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Generalized complex structures: (Hitchin, Gualtieri, 2003/2004)

J:TM —=TM, J?=-—Id,

» J € O(TM),
> Nj =0
Examples:

Co) () > )

More: Generalized Kahler structures (= bihermitian geometry)



Courant algebroids [Liu, Weinstein, Xu, 1997]

E — M vector bundle,



Courant algebroids [Liu, Weinstein, Xu, 1997]

E — M vector bundle,

(-,+) “inner product”,



Courant algebroids [Liu, Weinstein, Xu, 1997]

E — M vector bundle,

(-,+) “inner product”, p:E — TM, [, -] on T(E),



Courant algebroids [Liu, Weinstein, Xu, 1997]

E — M vector bundle,

(-,-) "inner product”, p:E— TM, [-,-] on [(E),
o [ew, [e2; es]] = [lex, e2l, e3] + [e2, [e1, €3]]

o [e1, feo] = fler, e2] + (Lye)fez

o Lyeylen, &) = ([e e, &) + (ex, [e, e2]])

o p([er; ) = [p(e1), p(e2)]



Courant algebroids [Liu, Weinstein, Xu, 1997]

E — M vector bundle,

(-,-) "inner product”, p:E— TM, [-,-] on [(E),
o [ew, [e2; es]] = [lex, e2l, e3] + [e2, [e1, €3]]
o [e1, feo] = fler, e2] + (Lye)fez
o Lyeylen, &) = ([e e, &) + (ex, [e, e2]])
o p(le; e]) = [p(e1), p(e2)]
o e el = zp"d{e, )



Courant algebroids [Liu, Weinstein, Xu, 1997]

E — M vector bundle,
(-,+) “inner product”, p:E — TM, [, -] on T(E),

o [ew, [e2; es]] = [lex, e2l, e3] + [e2, [e1, €3]]
o [er, fe] = fle, 2] + (Loepy Fe2
o Lyeylen, &) = ([e e, &) + (ex, [e, e2]])
o p(le; e]) = [p(e1), p(e2)]

o e el = zp"d{e, )

Exact: T"M — E —>TM
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Symmetries and reduction?

B., Cavalcanti, Gualtieri: Reduction of Courant algebroids and generalized complex
structures, Adv. in Math. (2007).

B., Cavalcanti, Gualtieri: Generalized Kahler and hyper-Kahler quotients, Contemp.
Math. (2008).

B., Cavalcanti, Gualtieri: Generalized Kahler geometry of instanton moduli spaces,
Arxiv: 1203.2385.

New features:

Extra symmetries:  Q2/(M)...
Lifted actions: g— F( ™ & T*M) [closed equivariant extension]

Moment maps:  p: M — b*, b a G-module...
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There is a trade-off:

“Unfamiliar” geometry on “familiar” spaces
versus

“Familiar” geometry on “unfamiliar’ spaces

We will see:

Generalized geometry is symplectic geometry on “deg 2 manifolds”
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2. N-manifolds

Degree 0: Usual manifold M, smooth functions A = C>*(M)...
locally = C*(U), U C R% open.

Degree 1: Sheaf of graded algebras A over M,
locally = C®(U)[el,. .., e?"], deg(et) = 1.

Degree 2: Sheaf of graded algebras A over M,
locally = C®(U)[et, ..., eN pt,..., p%],
deg(e*) =1, deg(p') =2.

M =(M,A), Aj= degree j “functions”... (4 = C>(M))

Local “coordinates’ (x', e*, p'), dimension (do|d1|db)...

Differential calculus: vector fields (derivations), submanifolds (ideals) ...
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Equivalent description of N-manifolds M = (M, A)
M, degree 1 &5 (E — M) vector bundle
Correspondence: A; =T(E*) and A=T(AE™")

M, degree2 &5 (E— M, F— M, ¢: F — A2E)

Correspondence: A; =T(E*), Ay =T(F*) and A=T(AE*)®T(SF*)/I

Example: deg. 1 vector field Q, [Q, Q] =2Q%* =0
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3. Symplectic N-manifolds

M = (M, A) N-manifold, degree r (r=1,2).
Symplectic structure: Poisson bracket
{ Ak x A = Akgi—r,
° {a b}— ( ) la[+4r) |b|+r){b a}
o {a,bc} ={a, byc+ (—1)I12+NIEIpL5 c}
o {{a. b}, c} = {a {b,c}} — (-1)(FHIIHI(p {a, c}},

NON-degenerate.

Hamiltonian vector fields...

Following Severa, Roytenberg, Vaintrob...
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Beginning the dictionary... (M,w)= (M, A, {-,-})

o Degree 1:
{Ao,Ao} =0, {./41,./40} C Ay, {./41,./41} C A;.

Consequence: (A1, {+,-}) = (XY(M),[-,"]), and (A, {-,-}) = (X*(M),[-,"])

Theorem: (M,w)deg. 1 = E=T'M

o Degree 2:
{Ao, Ao} =0, {A1, Ao} =0, {A1, A1} = Ao.
{A2, Ao} C Ao, {A2, A1} C A1, {Az, A2} C Ao

Consequence: Ay =T(E), and (A2,{,-}) is Atiyah algebroid of (E, (-,-))

Theorem: (M, w)deg. 2 = (E,(-,))
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4. Hamiltonians

M = (M, A) N-manifold, degree r (r=1,2).

©c -ArJrly

¢ Degree 1:

Theorem

o Degree 2:

Theorem

(0,0} = 0.
(A’ { }) = (X.(M)v ['7 ])

: © € Ay, {6,060} =0 = Poisson structure on M.

{fvg}l\/l = {{fve}vg}
(E> <'7 >)

: © € A3, {©,0} =0 = Courant structure p, [-,]

p(e) - ={{e ©},f}
[e1, e] = {{e1,0}, &2}
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Dictionary provides a hierarchy...

Symplectic N-manifold (M, w), degree r,
Hamiltonian © € 4,41, {©,0} =0.

¢ Degree 0: Symplectic manifolds
¢ Degree 1: Poisson manifolds

¢ Degree 2: Courant algebroids
and higher...

What is lagrangian/coisotropic submanifold? Hamiltonian action? GCS? etc...
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(M, w) (deg 2) symplectic N-manifold = (E,{(-,-))
A submanifold C < M is coisotropic if {Z¢,Zc} C Z¢

Theorem:
Coisotropic C < M ;1 (C,K,F,V),

where
» C — M submanifold
» K C E|¢c — C vector bundle, K C K+
» F C TC integrable distribution
» V flat, metric F-connection on K—; — C

Coisotropic reduction “C/ ~' works when F is simple and V has vanishing holonomy...



Coisotropic reduction of Courant structures...



Coisotropic reduction of Courant structures...

Let © € A3, {©,0} =0 = Courant structure p, [-,-].



Coisotropic reduction of Courant structures...

Let © € A3, {©,0} =0 = Courant structure p, [-,-].
Let C C M be coisotropic.

© is reducible if {©,Z¢:} C Z¢.



Coisotropic reduction of Courant structures...

Let © € A3, {©,0} =0 = Courant structure p, [-,-].
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Coisotropic reduction of Courant structures...

Let © € A3, {©,0} =0 = Courant structure p, [-,-].
Let C C M be coisotropic.

© is reducible if {©,Z¢:} C Z¢.

Theorem: O is reducible if and only if
» p(K+) C TC,

p(K) € F,

[Sk,S¥.] C Sk,

[p(S[YL)7 SF] - 5/:,

[SY.,S¢.] € Sy,

v

v

v

v

Corollary: coisotropic reduction of Courant algebroids.



5. Dictionary (in degree 2)

(Ev <'7 >)

(M, {-,-}) deg. 2, symplectic N-manifold

Courant structure [-,-], p

0 € A3(M), {©,0} =0

LCE|C7 L=1Lt

L C M Lagrangian submanifold

Dirac structure L (supp. on C)

L Lagrangian submanifold, ©|, = const.

(C, K, F,V) such that ...

C coisotropic submanifold, © reducible

gen. complex struc. J

J € A (M), {{6,7}, T} =-©

Actions (DGLAs), moment maps, MW reduction ...
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6. Further developments and applications

» “Coisotropic” reduction of Dirac, generalized complex...

» Hamiltonian actions and moment map reduction (of Courant
algebroids, Dirac/generalized complex structures...)

» Homological methods (singular reduction)



Thank you
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Lagrangian submanifolds...

C — M coisotropic = (C,K,F,V).
Proposition: C is Lagrangian < K=K+, F=TC.

It follows:

1-1
o Lagrangian submanifolds in M = (C,L),

where C < M submanifold, L C E|¢ subbundle, L = [+
o ©isreducible <= p(L) C TC and [S.,S]CS;.



Lagrangian submanifolds...

C — M coisotropic = (C,K,F,V).
Proposition: C is Lagrangian < K=K+, F=TC.

It follows:
. _ . 1-1
o Lagrangian submanifolds in M = (C,L),

where C < M submanifold, L C E|¢ subbundle, L = [+
o ©isreducible <= p(L) C TC and [S.,S]CS;.

Dirac structures (with support), Courant morphisms...



