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2d TQFT (closed sector)
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Particle interaction

String interaction

Definition inspired by String Theory (Witten).



From fields to functors

NX X10

Let HXi
:= Maps(F(Xi ),C). Then we can write a linear operator

of the form:
ZN : HX0 −→ HX1 ,

by the formula:

(ZN(Ψ))(ψ1) =

∫
F(X0)

K (ψ1, ψ0)Ψ(ψ0)Dψ0,

where the kernel K is given by

K (φ1, φ2) =

∫
φ∈F(N), φ|Xi =ψi

e−iS(φ)Dφ.



2d TQFT definition

NX X10

ZN : HX0 −→ HX1

ZN : HX01 ⊗ HX02 −→ HX11 ⊗ HX12 ⊗ HX13 ,



2d TQFT definition

N

X
X1

0

0 N1

X2

We require that
ZN = ZN1 ◦ ZN0 ,

ZN : HX01 ⊗ HX02 −→ HX11 ⊗ HX12 ⊗ HX13 .



2d TQFT definition

Σ’ Σ’’

Σ

ZΣ = ZΣ′′ ◦ ZΣ′



2d TQFT definition

Σ Σ

ZΣ̄ = Z ∗Σ



2d TQFT definition

S x I
1

ZS1×I = idA



The Frobenius Algebra

The structure of a TQFT on A automatically endows A with the
structure of a Frobenius algebra, where we have the product as the
operator induced by the pair of pants and the trace as the operator
induced by the right sided cap:

εμ

A⊗ A
µ−→ A A

ε−→ k



Unit Axiom

=



Commutativity

=



Associativity

=



Non-degeneracy

=



The classification theorem

Theorem
There is a canonical equivalence of categories:

2D-TFTk ' cFAk

where cFAk is the category of commutative Frobenius algebras.



The Case of Positive Boundaries

We define the category nCob+ by considering its object to be
oriented non-empty closed smooth (n − 1)-dimensional manifolds,
and the morphisms are the oriented smooth n-dimensional
manifolds(n-cobordism). Notice we do not allow the empty
manifold to be the in-boundary nor the out-boundary. We always
have components on both sides so, in the following picture, the
first cobordism m is allowed while the second ε is forbidden:

εμ



The classification theorem

Theorem (Gonzalez, -, Segovia, Uribe)

There is a one-to-one correspondence between nearly Frobenius
algebras and (1+1)-dimensional positive boundary topological
quantum field theories.



Definition of a Nearly-Frobenius Algebra.

Definition
A nearly Frobenius algebra A is an algebra together with a
commutative coassociative comultiplication ∆ : A −→ A⊗ A such
that ∆ is an A-bimodule morphism.

What this means explicitly is that whenever ∆(b) =
∑

i bi ⊗ b′i we
have in turn that the following equation holds:

∆(ab) =
∑
i

(a · bi )⊗ ci .

Also if ∆(a) =
∑

i ai ⊗ a′i , then

∆(ab) =
∑
i

ai ⊗ (a′i · b)

.
We write these identities more compactly as follows:

∆(ab) = a∆(b) = ∆(a)b (1)

and we call these equations the Abrams’ condition.



Non-degeneracy
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Examples

Example

Let A be the truncated polynomial algebra in one variable
k[x ]/xn+1. We will determine all the nearly-Frobenius structures
on A. Then, the pair

(
A,∆

)
is a nearly-Frobenius algebra. In

particular, we have that the coproduct ∆ is a linear combination of
the coproducts ∆k defined by:

∆k

(
x l
)

=
∑

i+j=n+k+l

x i ⊗ x j , for k ∈ {0, . . . , n}

that is ∆ =
n∑

k=0

ak∆k where ak ∈ k for all k ∈ {1, . . . , n}. Note

that ∆0 is the Frobenis coproduct of A where the trace map
ε : A→ C is given by ε

(
x i
)

= δi ,n. The other coproducts, ∆k

k 6= 0, do not come from a Frobenius algebra structure. That is, it
does not exist a trace map ε : A→ A⊗ A such that

(
A,∆k , ε

)
is a

Frobenius algebra for k = 1, . . . , n.



Examples

Example

Let A be the algebra C
[[

x , x−1
]]

of formal Laurent series.
Consider the coproducts given by:

∆j

(
x i
)

=
∑

k+l=i+j

xk ⊗ x l .

These coproducts define nearly Frobenius structures that do not
come from a Frobenius structure.



Examples

Example

The Poincaré algebra A := H∗(M) of a non-compact manifold M
is a nearly Frobenius algebra.



Examples

Consider the diagram:

M
∆ //

∆
��

M ×M

1×∆
��

M ×M
∆×1
// M ×M ×M

Using transversality, we have that:

(∆× 1)∗(1×∆)! = ∆!∆∗,

where ∆∗ : H∗(M)⊗ H∗(M) = H∗(M ×M)→ H∗(M), and
∆! : H∗(M)→ H∗(M)⊗ H∗(M) is the Gysin map. Therefore,(

∆∗ ⊗ 1
)(

1⊗∆!
)

= ∆!∆∗.

Then H∗(M) is an algebra with a coproduct which is a module
homomorphism.



Examples

Theorem (Ana Gonzalez,Artenstein, Lanzilotta)

The path algebra A associated to the cyclic quiver Q
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Examples

Theorem (Ana Gonzalez,Artenstein, Lanzilotta)

with m maximal paths of length ni , i = 1, . . . ,m admits R
nearly-Frobenius structures, where

R = m +
m∑
i=1

nini+1

whit nm+1 = m1.



The Moduli Space of Nearly Frobenius Structures of a
Fixed Algebra A

Theorem
Let A be a fixed k-algebra. Then the set of nearly Frobenius
coproducts of A making it into a nearly Frobenius algebra is a
k-vector space.

Definition
The Frobenius space associated to an algebra A is the vector of all
the possible co-products ∆ that make it into a nearly Frobenius
algebra. Its dimension over k is called the Frobenius dimension of
A.



Finite groups

If char(k) does not divide the order of G , then k[G ] is a
nearly-Frobenius algebra.

In the case of semi-simple algebras the Frobenius space of A is a
vector space of dimension equal to the dimension of A, and that it
has a one dimensional subspace (minus the origin) of bona fide
Frobenius structures.



(Non-compact) Calabi-Yau Categories
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Data for Calabi-Yau Categories

Id:
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Figure: Basic data for the open theory.



Perfect Pairings

=

a a

a

a

b b

b
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Figure: Assuming that the strip corresponds to the identity morphism, we
must have perfect pairings.



Open-Closed Transitions

a

a

a

a Oaa A

ιa: A Oaa

ιa:

Figure: Two ways of representing open to closed and closed to open
transitions.



=

ι ι

a
a a

a1Φ 1Φ

2Φ2Φ

a 1 2( )Φ Φa1 2( )Φ Φ)ιa(

Figure: ιa is a homomorphism.



=

A

a

a

a

a
ιa( )1 =1a

Figure: ιa preserves the identity.



=
Φ

Φ

Γ

Φ

Γ

ιa( )Γ = Γ Φιa( )

Figure: ιa maps into the center of Oaa.



=
Φ

Φ

Γ

Φ

Γ

ιa( )Γ = Γ Φιa( )

a

a

a

a

θθ a( ))(A

Figure: ιa is the adjoint of ιa.



πOaa: O bb

b

b

a

a

Figure: The double-twist diagram defines the map πa
b : Oaa → Obb.



The Cardy Condition

= = =
ba

aaaa
aa
aa

b
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Figure: The Cardy-condition is expressing the factorization of the
double-twist diagram in the closed string channel.

πab = ιb ◦ ιa. (2)



Example: Representations of a Finite Group G
Consider a finite group G . Where the category B is the category
Rep(G ) of finite dimensional representations of G . If
E ∈ Obj

(
Rep(G )

)
, the trace θE : OEE → C takes ψ : E → E to

1
|G | tr(ψ).

The algebra A is the center of the group algebra C[G ] such that:

ιE : Z
(
C[G ]

)
→ OEE ,∑

g

αgg 7→
∑
g

αgρg

ιE : OEE → Z
(
C[G ]

)
,

ψ : E → E 7→
∑
g

tr
(
ψg |E

)
g−1

and the trace

θ
Z
(
C[G ]
) : Z

(
C[G ]

)
→ C∑

g

αgg 7→ α1

|G |
.



Definition of NEARLY Calabi-Yau Categories

1. (A,∆A, 1A) is a commutative non compact Frobenius algebra.

2 Oab is a collection of vector spaces for a, b ∈ B.

2a. There is a family of associative linear maps:

ηbac : Oab ⊗Obc → Oac (3)

2b. There is a family of co-associative linear maps

∆c
ab : Oab → Oac ⊗Ocb.

2c. Moreover, ∆c
ab is a morphism of Oda ×Obe-bimodule, i.e. the

diagrams

Oda ⊗Oab

ηadb //

1⊗∆c
ab ��

Odb

∆c
db��

Oda ⊗Oac ⊗Ocbηadc⊗1
// Odc ⊗Ocb

Oab ⊗Obb
ηbae //

∆c
ab⊗1 ��

Oae

∆c
ae��

Oac ⊗Ocb ⊗Obe
1⊗ηbce

// Oac ⊗Oce

commute.



3. There are linear maps:

ιa : A → Oaa, ι
a : Oaa → A (4)

such that

3a. ιa is an algebra homomorphism:

ιa(φ1φ2) = ιa(φ1)ιa(φ2) (5)

3b. The identity is preserved

ιa(1A) = 1a (6)

3c. Moreover, ιa is central in the sense that:

ιa(φ)ψ = ψιb(φ) (7)

for all φ ∈ A and ψ ∈ Oab.



3d. The Cardy conditions: we define the map πab : Oaa → Obb as
follows. Since Oab and Oba are in duality (using θa or θb), if
we let ψµ be a basis for Oba, then there is a dual basis ψµ for
Oab. Then we set:

πab(ψ) =
∑
µ

ψµψψ
µ, (8)

and the Cardy condition is

πab = ιb ◦ ιa. (9)



String Topology

Let M be a smooth, orientable manifold of dimension n. The space
of free loop space is:

LM = {α : S1 → M},

where every loop is assumed piecewise smooth.
Chas and Sullivan in [CS] proved the next result.



String Topology

Theorem (Chas and Sullivan, 1999)

Let M be a compact, closed, smooth, orientable manifold of
dimension d. There is a commutative and associative product

Hp(LM)⊗ Hq(LM)→ Hp+q−d(LM)

I making H∗(LM) := H∗+d(LM) an associtive, commutative
graded algebra and

I compatible with the intersection product on H∗(M), i.e., the
following diagram commutes.

Hp(LM)⊗ Hq(LM) //

ev∗⊗ ev∗
��

Hp+q−d(LM)

ev∗

��
Hp M ⊗ Hq M // Hp+q−d M



String Topology

Theorem (Gonzalez, -, Segovia, Uribe)

String Topology can be extended to a Nearly Calabi-Yau category.
Let B be the category of D-branes, the objects of this category are
a collection of submanifolds of M,

Obj(B) =
{

Di ⊂ M : Di is a submanifold of M, i ∈ I
}
.

Now, we consider the path spaces:

PM(Di ,Dj) = {γ : [0, 1]→ M picewise smooth : γ(0) ∈ Di , γ(1) ∈ Dj}

Then, the morphisms of the category B are:

HomB(Di ,Dj) = H∗(PM(Di ,Dj)),

for Di ,Dj ∈ Obj(B).



String Topology

Relates results

I Cohen-Godin: Closed sector, nearly Frobenius algebra
(different proof) [CG04].

I Baas-Cohen-Ramirez. Homotopy type of the category. [?]

I Blumberg-Cohen-Teleman. A derived version. [BCT09]



Nearly G-Calabi-Yau

As before, we define the notion of a G -open-closed theory with
positive boundary as a G -open-closed theory but with the
restriction that the morphisms have at least one outgoing
boundary.
The algebraic characterization is the following:

1. A nearly G -Frobenius algebra associated to the circle.



Nearly G-Calabi-Yau

1. For each pair a, b of labels a vector space Oab with a G -action

ρ : G → Aut(Oab)

such that:

ρg (ηcab(ϕ1 ⊗ ϕ2)) = ηcab(ρg (ϕ1)⊗ ρg (ϕ2)),

∆c
ab(ρg (ϕ)) = (ρg ⊗ ρg )∆c

ab(ϕ),

for ϕ1 ∈ Oac , ϕ2 ∈ Ocb, ϕ ∈ Oab and g ∈ G . This conditions
are represented in the figures 10 and 11.

ϕ

ϕ

ϕ

ϕ
=g

g

g

a

b

c
1

2

a

a

a

b

b

bcc

c

2

1

Figure: The product is a G -morphism with the diagonal action.



Nearly G-Calabi-Yau

ϕ ϕ=g

g

g

a

cb

a

b

c

c

c

b
b

a
a

Figure: The coproduct is a G -morphism with the diagonal action.



Nearly G-Calabi-Yau

1. For every label a the vector space Oaa is non necessarily a
commutative nearly Frobenius algebra.

2. There are also G -twisted (equivariant) open-closed transition
maps:

ιg ,a : Cg → Oaa,

ιg ,a : Oaa → Cg ,

The map ι : C → O is obtained by adding up ιg , i.e.
ι = ⊕g∈G ιg is a ring homomorphisms, then:

ιg1(Φ1)ιg2(Φ2) = ιg2g1(Φ2Φ1),

with Φ1 ∈ Cg1 and Φ2 ∈ Cg2 . Moreover ιe(1C) = 1Oaa . The
G -twisted centrality condition is:

ιg (Φ)(ρgΨ) = Ψιg (Φ),

where Φ ∈ Cg y Ψ ∈ Oaa.



Nearly G-Calabi-Yau

1. The G -twisted Cardy conditions. For each g ∈ G , we must
have:

πag ,b = ιg ,bι
g ,a.

Hence, πag ,b is defined by:

πag ,b := ηabb ◦ τ ◦ (1⊗ ρg ) ◦∆b
aa : Oaa → Obb

where τ : Oab ⊗Oba → Oba ⊗Oab is the transposition map
(see figure 12).

g

=

g

a ba

a b

b

b

b

b
bb

b

baa

a

a

a

a
a

Figure: G-twisted Cardy condition.



Nearly G-Calabi-Yau

Theorem
The G -invariant part of a G-OC TFT with positive boundary is an
OC-TFT with positive boundary.



Orbifold String Topology

Theorem (Gonzalez, -, Segovia, Uribe)

Orbifold String Topology can be extended to a G-Nearly
Calabi-Yau category.



Virtual Orbifold Cohomology

Let S be a complex manifold and let S1 and S2 be closed
submanifolds that intersect cleanly; that is, U := S1 ∩ S2 is a
submanifold of S and at each point x of U the tangent space of U
is the intersection of the tangent spaces of S1 and S2. Let
E (S ,S1, S2) be the excess bundle of the intersection, i.e., the
vector bundle over U which is the quotient of the tangent bundle
of S by the sum of the tangent bundles of S1 and S2 restricted to
U. Thus E (S ,S1, S2) = 0 if and only if S1 and S2 intersect
transversally. In the Grothendieck group of vector bundles over U,
the excess bundle becomes:

E (S ,S1, S2) = TS |U + TU − TS1 |U − TS2 |U .



Virtual Orbifold Cohomology

Denote by e(S ,S1, S2), the Euler class of E (S , S1, S2) and by:

U
i1 //

h

  
i2
��

S1

j1
��

S2
j2
// S

(10)

the relevant inclusion maps. Then, for any cohomology class
α ∈ H∗(S1), the following excess intersection formula [Qui71,
Prop. 3.3] holds in the cohomology ring of S2:

j∗2 j1∗α = i2∗ (e(S , S1, S2)i∗1 (α)) . (11)



Virtual Orbifold Cohomology

Consider the orbifold [Y /G ] where Y is an almost complex
manifold and G acts preserving the almost complex structure.
Define the groups:

H∗(Y ,G ) :=
⊕
g∈G

H∗(Y g )× {g}

where Y g is the fixed point set of the element g . The group G
acts in the natural way. Denote by Y g ,h = Y g ∩ Y h and suppose
that, for every g , h ∈ G , we have cohomology classes
v(g , h) ∈ H∗(Y g ,h), which are G -equivariant in the sense that
w∗v(k−1gk, k−1hk) = v(g , h) where w : Y k−1gk,k−1hk → Y g ,h

takes x to w(x) := xk . Define the map:

× : H∗(Y g )× H∗(Y h) → H∗(Y gh)

(α, β) 7→ i∗ (α|Y g.h · β|Y g,h · v(g , h))

where i : Y g ,h → Y gh is the natural inclusion.



Virtual Orbifold Cohomology

Let us define now a degree shift σ on H∗(Y ,G ). We will declare
that the degree of a class αg ∈ H∗(Y g ) ⊂ H∗(Y ,G )[σ] is:

i + σg

where
σg := 2(dimC Y − dimC Y g ),

and i is the ordinary degree of αg . In this book, all dimensions and
codimensions are complex. Virtual orbifold cohomology was
introduced in [LUX07]. There it was shown that:



Virtual Orbifold Cohomology

Theorem
For the cohomology classes v(g , h) = e(Y ,Y g ,Y h) the map ×
defines an associative graded product on
H∗virt(Y ,G ) := H∗(Y ,G )[σ].



Virtual Orbifold Cohomology

Theorem (Gonzalez, -, Segovia, Uribe)

Virtual Orbifold Cohomology Extends to a Nearly Calabi-Yau
category. The open part is the following: Let be
B =

{
X ⊂ M : G -invariant

}
such that, if X ,Y ∈ B then

TX |(X∩Y )g
∼= TY |(X∩Y )g for all g ∈ G . We define

HomB(X ,Y ) = H∗(X ∩ Y ), for X ,Y ∈ B.



Virtual Orbifold Cohomology

Theorem (Gonzalez, -, Segovia, Uribe)

Let
(
H∗virt(M; G ),B

)
be the open closed virtual cohomology of

[M/G ]. If we change the correction clases of the open virtual
coproduct and the closed map by

Eε(X ,Y ,Z ) =
(
TM + T (X ∩ Y ∩ Z )− T (X ∩ Z ) + εTY

)
|X∩Y∩Z

and
F ε
g =

(
TX g + εTX

)
|X g

we have a one parameter family of open closed TFT with positive
boundary, where ε ∈ C.



Chen-Ruan Cohomology

We will give now the definition of the Chen-Ruan cohomology
following [CR04]. First, we need to define the degree shifting and
the obstruction bundle for the Chen-Ruan theory.
The definition of the degree shifting is local so it is enough to
define it in the case of a global quotient (cf. [FG03]).
Consider Y an almost complex G -manifold with G a finite group.
Given g ∈ G and y ∈ Y g , we define a(g , y) the age of g at y as
follows. Diagonalize the action of g in TyY to obtain:

g = diag(exp(2πir1), . . . , exp(2πirn)),

with 0 ≤ ri < 1 and set:

a(g , y) :=
∑
i

ri .



Chen-Ruan Cohomology
The age a(g , y) only depends on the connected component Y g

o of
Y g in which y lies. For this reason, we can simply write a(g ,Y g

o )
or even a(g) when there is no confusion.
Note that the age has the following interesting property:

a(g ,Y g
o ) + a(g−1,Y g

o ) = codim(Y g
o ,Y ).

The Chen-Ruan degree shifting number is defined then as:

sg := 2a(g).

As a rational vector space the Chen-Ruan orbifold cohomology is:

H∗CR(Y ,G ) := H∗(Y ,G )[s] =
⊕
g∈G

H∗(Y g ,C)[sg ]

or more generally:

H∗CR(G) := H∗(I (G))[s].



Chen-Ruan Cohomology

The definition of the obstruction bundle is modeled on the
definition of the virtual fundamental class on the moduli of curves
for quantum cohomology.
Let M̄3(G) be the moduli space of ghost representable orbifold
morphisms fy from P1

3 to G, where im(f ) = y ∈ G0 and the marked
orbifold Riemann surface P1

3 has three marked points, z1, z2, and
z3, with multiplicities m1, m2, and m3, respectively. In [ALR07]
they prove that

M̄3(G) = G2.

Let us fix a connected component G2
o of G2.

To define the Chen-Ruan obstruction bundle Eo → G2
o we consider

the elliptic complex:

∂̄y : Ω0(f ∗y TG) −→ Ω0,1(f ∗y TG).

Chen and Ruan proved that coker(∂̄y ) has constant dimension
along components and forms an orbivector bundle Eo → G2

o .



Chen-Ruan Cohomology

The formula for the Chen-Ruan product is then (see Section ??)

H∗CR(G)⊗ H∗CR(G) −→ H∗CR(G)

given by:
α ? β := (e12)∗(e∗1α · e∗2β · e(E)).



Chen-Ruan Cohomology

The following is a theorem of Chen and Ruan [CR04] (cf. [Kau03].)

Theorem
(H∗CR(G), ?) is a graded associative algebra, moreover it has a
natural Frobenius algebra structure compatible with this product.
In addition it is a G -Frobenius algebra in the global case.



Virtual Orbifold Cohomology and Chen-Ruan Cohomology

Corollary

In either one of the following cases the hypothesis of theorem ??
are satisfied:

I X = [M/G ] is hyperkahler (e.g. M hyperkahler and G acting
by hyperkahler isomorphisms.)

I X = Y × Y for a complex orbifold Y.

I X = TY for a complex orbifold Y.

and hence, we have in those cases:

j∗ : H∗CR(T ∗M,G )
∼=→ H∗virt(M,G ),

and
K(T ∗M,G ;λ−1(R))

∼=−→ K(M,G ;λ−1(ν))



Virtual Orbifold Cohomology and Chen-Ruan Cohomology

Let sg be the Chen-Ruan degree shifting number for a component
of I (T ∗X ) and σg the virtual degree shifting number for I (X ).
Then, it is a fun exercise to show that

sg = σg .

Therefore, the isomorphism of theorem ?? is a graded isomorphism.
(For more on gradings we refer the reader to [Hep10]. For related
work we refer the reader to [EJK12b, EJK10, EJK12a] where there
is alternative approaches to some very related results).



Virtual Orbifold Cohomology and Chen-Ruan Cohomology
For ordinary manifolds, Viterbo [Vit99], Salamon-Weber [SW06]
and Abbondandolo-Schwarz [AS06] have constructed isomorphisms
between a particular flavor of the Floer homology of the cotangent
bundle T ∗M and the ordinary homology of the free loop space

HF∗(T ∗M) ' H∗(LM).

Abbondandolo and Schwarz have proved that the pair of pants
product in Floer cohomology of the cotangent corresponds to a
product in the homology of the loop space, defined via Morse
theory, which Antonio Ramirez and Ralph Cohen [CV] proved is
the Chas-Sullivan product. One of the main conjectures in the field
states that the symplectic field theory on the left-hand side
corresponds to the string topology on the right-hand side. Here we
should also mention that, for a wide class of manifolds, it has been
shown that Floer cohomology is isomorphic to Quantum
cohomology [PSS96].
These results are in line with those conjectures.



Virtual Orbifold Cohomology and Chen-Ruan Cohomology

It is routinary to generalize these results to non-global orbifolds.
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