# Smooth Kuranishi atlases

#### **Dusa McDuff**

Department of Mathematics, Barnard College, Columbia University

www.math.barnard.edu

partially supported by NSF grants 0905191,1308669

Special Session: Advances in Symplectic Geometry and Topology

Guanajuato, August, 2013

#### Contents:

This is a talk about my ongoing project with Katrin Wehrheim [MW1,2] to clarify the construction of the virtual moduli cycle in the Gromov–Witten context. Basic question: how can one count closed *J*-holomorphic curves in a symplectic manifold in a way that is independent of choices?

The talk will be divided into several parts.

Part 1: Explanation of the problem.

Part 2: Kuranishi atlases.

Part 3: Building charts with isotropy.

### Counting *J*-holomorphic spheres:

 $(M^{2n}, \omega, J)$  is a symplectic manifold with an  $\omega$ -tame almost complex structure J. We want to count the number of J-holomorphic maps  $f: (S^2, j) = (\mathbb{C} \cup \infty, j) \to (M, J)$ , with  $f_*([S^2]) = A \in H_2(M, \mathbb{Z})$  (modulo parametrization) that satisfy certain homological constraints: e.g. if  $Y \subset M$  is a submanifold, count

$$\#\left(\left\{f\mid 0=\overline{\partial}_J f=:\frac{1}{2}(df+J\circ f\circ j),\ f(\infty)\in Y\right\}/_{G_{\infty}}\right)$$

where  $G_{\infty}$  is the group of reparametrizations  $z \mapsto az + b$  fixing  $\infty$ .



### The virtual fundamental class VFC:

More abstractly, we would like to show that the space of solutions X to the Fredholm equation  $\overline{\partial}_J f = 0$ ,  $f_*([S^2]) = A$  has a homology class

```
[X]^{\mathrm{vir}} \in H_d(X)
```

(in the dimension d of the index of the Fredholm operator).

Then the count would just be the intersection number  $ev_*([X]^{vir}) \cdot_M [Y]$ where ev is the evaluation map  $ev(f) = f(\infty)$ .

In the semi-positive case, one can often choose J so that X is a manifold of dimension d; if noncompact, it often still has "boundary" of codimension  $\geq 2$ , so that  $ev : X \rightarrow M$  represents a well defined homology class (independent of choice of J).

# Problems with the naive (geometric) approach: 5.

- Nonregular J: Even if J is generic, the space of solutions X := M<sub>0,1</sub>(A, J) to the Fredholm equation ∂J f = 0, f<sub>\*</sub>([S<sup>2</sup>]) = A is not usually a manifold of the right dimension (i.e. equal to the Index of ∂J).
- Existence of isotropy: Some solutions have an internal symmetry (e.g.  $f: z \mapsto z^2$  is invariant under the action of  $\mathbb{Z}/2\mathbb{Z}$  by  $z \mapsto -z$ ). So  $X := \mathcal{M}_{0,1}(A, J)$  has to be given some kind of orbifold structure.
- Lack of compactness: Usually one must compactify the solution space by adding nodal curves that then must be glued together, greatly complicating the required analysis.
- ► Lack of smoothness: One must use Banach space of maps f : S<sup>2</sup> → M (e.g. W<sup>k,p</sup>-maps) to do Fredholm analysis, but the reparametrization group does not act differentiably on such a space.

In 1990s, great progress with these issues by Li-Tian, Fukaya–Ono and others (Ruan, Siebert, ...). Emphasis on gluing analysis; sketchy treatment of smoothness/topological issues in constructing charts, VFC.

#### Recent new developments:

- Polyfolds: Hofer–Wysocki–Zehnder (2006 now) series of papers completely redoing the analytic foundations. Gromov–Witten preprint: arxiv 1107.2097
- Smooth Kuranishi atlases: McDuff–Wehrheim, arXiv 1208.1340: recast the basic definitions of FO, FOOO in more categorical terms; redid the topological aspects of the proof in a special case (no nodes, no isotropy).
- Detailed treatment of Kuranishi structures: Fukaya–Oh–Ohta–Ono, arXiv 1209.4410; many more details of the general case, including smoothness of gluing.
- New, wholistic approach using "Donaldson divisors": lonel-Parker, arXiv 1304.3472; more geometric approach initially suggested by Cieliebak-Mohnke.
- Reworking of the Tian approach using "virtual manifolds": Chen-Li-Wang, arXiv 1306.3276. new way of dealing with the nonsmooth action.

#### Finite dimensional reductions [F0], [F000], [MW], [CLW]: 7.

The moduli space X can be locally modelled by a finite dimensional reduction  $(U, E, \Gamma, s, \psi)$ , where

- ▶ the domain U is a smooth manifold, the obstruction space  $E \cong \mathbb{R}^n$ ;
- the isotropy group  $\Gamma$  is a finite group acting diagonally on  $U \times E$ ;
- the section  $s: U \to E$  is induced by  $\overline{\partial}_J$ , and is  $\Gamma$ -equivariant;
- the footprint map ψ : s<sup>-1</sup>(0) → X induces a homeomorphism s<sup>-1</sup>(0)/<sub>Γ</sub> → F, where F ⊂ X is open.



### Kuranishi atlases [MW1]:

Let X be a compact, metrizable space. A Kuranishi chart for X with footprint F is a tuple  $\mathbf{K} = (U, E, \Gamma, s, \psi)$  with  $F = \operatorname{im} \psi$ .

- A covering family of basic charts for X is a finite collection  $(\mathbf{K}_i)_{i=1,...,N}$  of Kuranishi charts with  $X = \bigcup_{i=1}^N F_i$ .
- ► Transition data for (K<sub>i</sub>)<sub>i=1,...,N</sub> is a collection of charts (K<sub>J</sub>)<sub>J∈I<sub>K</sub>,|J|>2</sub> and coordinate changes (Â<sub>J</sub>)<sub>I,J∈I<sub>K</sub>,I⊂J</sub> as follows:
  - 1.  $\mathcal{I}_{\mathcal{K}}$  is the set of subsets  $I \subset \{1, \ldots, N\}$  s.t.  $F_I := \bigcap_{i \in I} F_i \neq \emptyset$ ;
  - 2. the sum chart  $K_J$  has footprint  $F_J = \bigcap_{i \in J} F_i$  and additive obstruction space  $E_J \cong \bigoplus E_{i \in J}$ ; (in GW case must be built using some analysis)
  - all charts have the same dimension d := dim U<sub>I</sub> dim E<sub>I</sub> = Ind(∂
    <sub>J</sub>) (so dim U<sub>I</sub> ≤ dim U<sub>J</sub> if I ⊂ J.)
  - Φ<sub>IJ</sub> is a coordinate change K<sub>I</sub> → K<sub>J</sub> for every I, J ∈ I<sub>K</sub> with I ⊊ J. (to be explained)

A Kuranishi atlas  $\mathcal{K}$  on X consists of  $(\mathbf{K}_J, \widehat{\Phi}_{IJ})$  as above satisfying the cocycle condition. (to be explained)

#### Coordinate changes I (no isotropy):

If  $I \subset J$  then  $F_I \supset F_J$  and there is a coordinate change  $\mathbf{K}_I \to \mathbf{K}_J$ , consisting of a restriction  $\mathbf{K}_I \to \mathbf{K}_I |_{U_{IJ}}$  followed by an inclusion  $\mathbf{K}_I |_{U_{IJ}} \to \mathbf{K}_J$  induced by an embedding  $\phi_{IJ} : U_{IJ} \to U_J$ , where

- $U_{IJ} \subset U_I$  (in grey) intersects the zero set  $s_I^{-1}(0)$  in  $\psi_I^{-1}(F_J)$ ;
- ► the (grey) image of  $\phi_{IJ}$  :  $U_{IJ} \rightarrow U_J$  is a smooth submanifold with "nice" normal bundle;

9

- there is an associated linear inclusion  $\widehat{\phi}_{IJ} : E_I \to E_J$ ;
- ▶ obvious compatibility conditions with footprint maps and sections; (eg for  $x \in \psi_I^{-1}(F_J)$ , we have  $\psi_J \circ \phi_{IJ}(x) = \psi_I(x) \in F_J$ )



### Cocycle condition and Kuranishi category (no isotropy) : 10.

Aim: each atlas  $\mathcal{K}$  should have domain and bundle categories with functor proj :  $\mathbf{E}_{\mathcal{K}} \to \mathbf{B}_{\mathcal{K}}$ , where  $\operatorname{Obj}_{\mathbf{B}_{\mathcal{K}}} = \bigcup_{I} U_{I}$  and the morphisms  $\operatorname{Mor}_{\mathbf{B}_{\mathcal{K}}} = \bigcup_{I \subset J} U_{IJ}$  are defined by the coordinate changes.

- The cocycle condition ensures that composition is possible, i.e. if φ<sub>JK</sub> ∘ φ<sub>IJ</sub>(x) is defined for x ∈ U<sub>IJ</sub> so is φ<sub>IK</sub>(x) and they are equal.
- In practice, one can only construct weak atlases with the weak cocycle condition, i.e. whenever both maps are defined, they are equal.
- We also want the realization |K| := ⋃<sub>I</sub> U<sub>I</sub>/~ of B<sub>K</sub> to have good properties eg Hausdorff, a well-behaved metric...

**Proposition** ([MW1], §6): A weak Kuranishi atlas can be tamed to form a Kuranishi atlas  $\mathcal{K}$  with a "nice" realization  $|\mathcal{K}|$ .

From (weak) Kuranishi category to VFC (no isotropy): 11.

[MW1] Theorem B. Let  $\mathcal{K}$  be an oriented, d-dimensional, weak, additive Kuranishi atlas with trivial isotropy groups on a compact metrizable space X. Then  $\mathcal{K}$  determines a cobordism class of smooth, oriented, compact manifolds, and an element  $[X]_{\mathcal{K}}^{vir}$  in the Čech homology group  $\check{H}_d(X;\mathbb{Q})$ . Both depend only on the cobordism class of  $\mathcal{K}$ .

The class  $[X]_{\mathcal{K}}^{vir}$  is represented by the zero set  $Z(s + \nu)$  – which is a manifold – of a transverse perturbation  $|s + \nu|$  of the section |s| of  $|\text{proj}| : |\mathbf{E}_{\mathcal{K}}| \to |\mathcal{K}|$ .

The perturbation  $\nu$  is tricky to construct: there is an inclusion  $\iota_X : X \to |\mathcal{K}|$  with image equal to Z(s), but Z(s) does NOT have compact neighbourhood in  $|\mathcal{K}|$ ; so need to work to ensure that  $Z(s + \nu)$  is compact.

### Kuranishi atlases with isotropy [MW2], : 12.

Recall: An atlas is:  $\mathcal{K} = (\mathbf{K}_I, \widehat{\Phi}_{IJ})$  where  $(\mathbf{K}_i)$  is a covering family,  $\mathbf{K}_I$  are sum charts, and each  $\widehat{\Phi}_{IJ} : \mathbf{K}_I \to \mathbf{K}_J$  is a coordinate change over  $F_J$  with cocycle condition for  $I \subset J \subset K$ . When there is no isotropy,  $\widehat{\Phi}_{IJ}$  is a restriction to  $U_{IJ} \subset U_I$  followed by an "inclusion"  $\phi_{IJ} : U_{IJ} \to U_J$ . With isotropy, the picture changes a little:

For  $I \subset J$ , the group  $\Gamma_J := \prod_{i \in J} \Gamma_i$  of  $\mathbf{K}_J$  splits as  $\Gamma_J = \Gamma_I \times \Gamma_{J \setminus I}$ . The coordinate change is given by a subset  $\widetilde{U}_{IJ} \subset U_J$  where

- $\widetilde{U}_{IJ}$  is  $\Gamma_J$  invariant, where  $\Gamma_{J\setminus I}$  acts freely;
- ► the quotient  $\widetilde{U}_{IJ/\Gamma_{J\setminus I}}$  can be identified  $\Gamma_I$ -equivar. with  $U_{IJ} \subset U_I$ ; we get equivariant covering map  $\rho_{IJ} : \widetilde{U}_{IJ} \to U_{IJ}$  that intertwines  $s, \psi$ .
- the category  $\mathbf{B}_{\mathcal{K}}$  has morphisms  $\widetilde{U}_{IJ} \times \Gamma_I$  with

 $s \times t : \widetilde{U}_{IJ} \times \Gamma_I \ni (x, \gamma_I) \mapsto (\gamma_I^*(\rho_{IJ}(x)), x) \in U_I \times U_J,$ 

(these are morphisms from a subset of  $U_I$  into  $U_J$ , coming from the group actions and coord changes)

#### From the intermediate category to the VFC: 13.

The intermediate chart  $\underline{K}_{I}$  has no isotropy, but has orbifold domain and bundle:

$$\underline{U}_I := \frac{U_l}{\Gamma_l}, \quad \underline{U_l} \times \underline{E_l} := \frac{U_l}{E_l} \times \frac{E_l}{\Gamma_l}; \quad \pi_I : U_l \to \underline{U}_l.$$

A Kur. atlas  ${\mathcal K}$  has an intermediate domain category  $\underline{\boldsymbol{B}}_{{\mathcal K}}$  where

$$\operatorname{Obj}_{\underline{\mathbf{B}}_{\mathcal{K}}} = \bigcup_{I} \underline{\underline{U}}_{I}, \quad \operatorname{Mor}_{\underline{\mathbf{B}}_{\mathcal{K}}} = \bigcup_{I \subset J} \underline{\underline{U}}_{IJ}, \text{ where } \underline{\underline{U}}_{IJ} = \pi_{J}(\widetilde{\underline{U}}_{IJ}) \subset \underline{\underline{U}}_{J}.$$

- ► The functor B<sub>K</sub> → B<sub>K</sub> induces a proper map on objects and morphisms. (inverse images of compact sets are compact).
- ► The previous work for the "no isotropy" case applies to <u>B</u><sub>K</sub> and then lifts to B<sub>K</sub>. So we can construct tamings and (multi)sections as before.
- Thus get VFC represented by a weighted branched manifold, well defined up to cobordism; completing the abstract theory.

#### Charts for the 2, 3-football orbifold:



Figure : X is  $S^2$  with two orbifold points of orders 2, 3. There are two basic charts  $(U_1, \mathbb{Z}_3), (U_2, \mathbb{Z}_2)$  with images discs  $\underline{U}_i \subset X$ , and one transition chart  $(U_I, \mathbb{Z}_2 \times \mathbb{Z}_3)$  (where  $I = \{1, 2\}$ ) with image the annulus  $\underline{U}_I = \underline{U}_1 \cap \underline{U}_2$ .

Gromov–Witten case [MW2]: set up for basic chart :

$$X = \{f: S^2 \to (M, J) \mid \overline{\partial}_J f = 0, \ f_*([S^2]) = A\}/G_{\infty}$$

To make chart at  $[f_0] \in X$  with  $\Gamma = \text{Stab}([f_0])$ , must

- Stabilize domain by adding two marked points 0, 1 and fix parametrization f<sub>0</sub> by fixing f<sub>0</sub>(0), f<sub>0</sub>(1); This is achieved via slicing conditions: i.e. Choose Q<sup>2n-2</sup> ⊂ M transverse to im f<sub>0</sub>, and require f<sub>0</sub>(0), f<sub>0</sub>(1) ∈ Q;
- Extend  $v^0 := 0, v^1 = 1$  to a (minimal)  $\Gamma$ -invariant tuple  $\vec{v} = (v^0, \dots, v^{L-1});$
- ► Choose Γ-invariant set of disjoint disc nbhds  $D^{f_0}(v^{\ell}) \subset S^2$  s.t.  $f_0^{-1}(Q) \cap D^{f_0}(v^{\ell}) = \{v^{\ell}\} \forall \ell;$
- ▶ Choose obstruction space  $E_0 \subset C^{\infty}$ -sect $(\mathcal{H})$  where  $\mathcal{H} \to S^2 \times M$  is bundle with  $\mathcal{H}_{(z,x)} = \operatorname{Hom}_J^{0,1}(T_z S^2, T_x M)$  s.t.  $E_0$  covers coker $D_{f_0}(\overline{\partial}_J)$
- ► This gives a "geometrically defined" obstruction space  $\vec{E} := \bigoplus_{\gamma \in \Gamma} E_0^{\gamma}$ , the sum of  $|\Gamma|$  copies of  $E_0$ . ("Abstract" obstruction spaces do not usually transform  $C^1$  smoothly under coordinate changes.)

#### Gromov–Witten case: a basic chart II: 16.

- ► Given  $\vec{w} = (w^0, \dots, w^{L-1}) \in (S^2)^L$  define  $\phi_{\gamma, \vec{w}} \in G_\infty$  to be the unique map s.t.  $0 \mapsto w^{\gamma(0)}, 1 \mapsto w^{\gamma(1)}$ .
- ▶ Define  $U \subset \vec{E} \times (S^2)^L \times \text{nbhd}(f_0)$  by "Fredholm stabilization":

$$U: = \left\{ \left(\vec{\nu}, \vec{w}, f\right) \mid \overline{\partial}_J f = \sum_{\gamma} (\phi_{\gamma, \vec{w}}^{-1})^* \nu^{\gamma} \Big|_{\operatorname{graph} f}, \\ {}_{\operatorname{(normalization)}} w^0 = 0, w^1 = 1, \quad {}_{\operatorname{(slicing)}} w^{\ell} = f^{-1}(Q) \cap D^{f_0}(v^{\ell}) \right\}$$

- Action of  $\Gamma: (\vec{\nu}, \vec{w}, f) \mapsto \gamma^*(\vec{\nu}, \vec{w}, f) = (\gamma^*(\vec{\nu}), \gamma^*(\vec{w}), f \circ \phi_{\gamma, \vec{w}})$ , where  $(\gamma^*(\vec{\nu}))^\ell = \nu^{\gamma(\ell)} =: (\gamma \cdot \vec{\nu})^\ell$ ,  $(\gamma^*(\vec{w}))^\ell = \phi_{\gamma, \vec{w}}^{-1}(w^{\gamma(\ell)}) = \phi_{\gamma, \vec{w}}^{-1}((\gamma \cdot \vec{w})^\ell)$ . (This preserves slicing conditions and normalization  $\gamma^*(\vec{w}) = (0, 1, ...)$ : you can't just permute the tuple  $\vec{w}$  since we have normalized.)
- ► The chart is  $(U, \vec{E}, \Gamma, s, \psi)$  where  $s(\vec{\nu}, \vec{w}, f) = \vec{\nu} \in \vec{E}$ ,  $\psi(\vec{\nu}, \vec{w}, f) = [f]$ .

#### Gromov–Witten case: a transition chart: 17.

Given  $(U_i, \vec{E}_i, \Gamma_i, s_i, \psi_i)$ , pick  $i_0 \in \{1, 2\}$  and define  $\mathbf{K}_I$  for  $I = \{1, 2\}$  with domain  $i_0$ -normalized; so  $U_I \subset \mathcal{W}_{I,i_0}$  where

$$\mathcal{W}_{l,i_0} = \big\{ (\underline{\vec{\nu}},\underline{\vec{w}},f) \in \vec{E}_1 \times \vec{E}_2 \times (S^2)^{L_1+L_2} \times \mathrm{nbhd}(f_0) \ \big| \ w_{i_0}^0 = 0, w_{i_0}^1 = 1 \big\}$$

► 
$$U_I := \left\{ (\underline{\vec{\nu}}, \underline{\vec{w}}, f) \mid \overline{\partial}_J f = \sum_{i=1,2,\gamma \in \Gamma_i} (\phi_{\gamma, \overline{w}_i}^{-1})^* \nu_i^{\gamma} \Big|_{\operatorname{graph} f}, f(w_i^{\ell}) \in Q_i \right\}$$
  
(here  $U_I \subset W_{I,i_0}$ ; also must specify the ordering of the tuple  $\overline{w}_j, j \neq i_0$ , more carefully)

- Action of  $\Gamma_1$  depends on  $i_0$ : with  $i_0 = 1$ 
  - $\gamma \in \Gamma_1$  acts by perm. and reparametrization (to preserve normalization)

$$\gamma^{*}(\vec{\nu}_{1},\vec{\nu}_{2},\vec{w}_{1},\vec{w}_{2},f) = (\gamma \cdot \vec{\nu}_{1},\vec{\nu}_{2},\phi_{\gamma,\vec{w}_{1}}^{-1}(\gamma \cdot \vec{w}_{1}),\phi_{\gamma,\vec{w}_{1}}^{-1}(\vec{w}_{2}),f \circ \phi_{\gamma,\vec{w}_{1}}),$$

•  $\gamma \in \Gamma_2$  acts just by permutation

$$\gamma^*(\vec{\nu}_1, \vec{\nu}_2, \vec{w}_1, \vec{w}_2, f) = (\vec{\nu}_1, \gamma \cdot \vec{\nu}_2, \vec{w}_1, \gamma \cdot \vec{w}_2, f),$$

b the projection ρ<sub>1,I</sub>: U<sub>I</sub> ⊃ Ũ<sub>1,I</sub> → U<sub>1</sub> is the forgetful map (ṽ<sub>1</sub>, ṽ<sub>2</sub>, w̃<sub>1</sub>, w̃<sub>2</sub>, f) ↦ (ṽ<sub>1</sub>, w̃<sub>1</sub>, f) (and for i = 2 is forgetful map plus renormalization. i.e. All elements of the construction are very natural.)

## Further directions:

- The previous slides attempt to explain how to construct a Kuranishi atlas near the parts of X represented by curves with smooth domains.
- It remains to deal with nodal curves. Instead of using a fancy gluing theorem that would give a smooth structure to the domains U near a nodal curve, we will use the standard theorem in [Mc-Sal] that gives continuity in the gluing parameters a but with evaluation maps depending C<sup>1</sup> on a. This is enough to give a Kuranishi atlas whose domains are stratified smooth. [Details still to be written, should be pretty straightforward]
- ► An interesting special case is when there is a regular J (e.g. for a space of genus zero stable maps into CP<sup>n</sup>.) Then there is an orbifold Kuranishi atlas (i.e. all E trivial) [Details still to be written]
- Potential generalizations: to curves in manifolds with S<sup>1</sup> action; to curves with intrinsic Lie group symmetries (e.g. Hamiltonian Floer homology with time independent Hamiltonian [needs extra work to deal with the boundary]), to Gromov–Witten invariants for symplectic orbifolds ... [none of this done at all]

# A few recent References:

[CLW13] Bohui Chen, An-Min Li, and Bai-Ling Wang, Virtual neighborhood technique for pseudo-holomorphic spheres, arXiv:1306.3276.

[FOOO12] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Technical detail on Kuranishi structure and Virtual Fundamental Chain, arXiv:1209.4410.

[HWZ4] H. Hofer, K. Wysocki, and E. Zehnder, Applications of Polyfold theory I: The Polyfolds of Gromov–Witten theory, arXiv:1107.2097.

[IP] E. lonel and T. Parker, A natural Gromov–Witten fundamental class, arXiv:1302.3472

[Mc-Sal] D. McDuff and D.A. Salamon, *J-holomorphic curves and symplectic topology*, Colloquium Publications **52**, American Mathematical Society, Providence, RI, (2004), 2nd edition (2012).

[MW1] D. McDuff and K. Wehrheim Smooth Kuranishi atlases without isotropy, arXiv:1208.1340.

[MW2] D. McDuff and K. Wehrheim Smooth Kuranishi atlases with isotopy, in preparation