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Contents: 2.

This is a talk about my ongoing project with Katrin Wehrheim [MW1,2]
to clarify the construction of the virtual moduli cycle in the
Gromov–Witten context. Basic question: how can one count closed
J-holomorphic curves in a symplectic manifold in a way that is
independent of choices?

The talk will be divided into several parts.

Part 1: Explanation of the problem.

Part 2: Kuranishi atlases.

Part 3: Building charts with isotropy.



Counting J-holomorphic spheres: 3.

(M2n, ω, J) is a symplectic manifold with an ω-tame almost complex
structure J. We want to count the number of J-holomorphic maps
f : (S2, j) = (C ∪∞, j)→ (M, J), with f∗([S2]) = A ∈ H2(M,Z)
(modulo parametrization) that satisfy certain homological constraints:
e.g. if Y ⊂ M is a submanifold, count

#

({
f | 0 = ∂J f =: 1

2 (df + J ◦ f ◦ j), f (∞) ∈ Y
}
/G∞

)
where G∞ is the group of reparametrizations z 7→ az + b fixing ∞.
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The virtual fundamental class VFC: 4.

More abstractly, we would like to show that the space of solutions X to
the Fredholm equation ∂J f = 0, f∗([S2]) = A has a homology class

[X ]vir ∈ Hd(X )

(in the dimension d of the index of the Fredholm operator).

Then the count would just be the intersection number ev∗([X ]vir) ·M [Y ]
where ev is the evaluation map ev(f ) = f (∞).

In the semi-positive case, one can often choose J so that X is a manifold
of dimension d ; if noncompact, it often still has “boundary” of
codimension ≥ 2, so that ev : X → M represents a well defined homology
class (independent of choice of J).



Problems with the naive (geometric) approach: 5.

I Nonregular J: Even if J is generic, the space of solutions

X :=M0,1(A, J) to the Fredholm equation ∂J f = 0, f∗([S2]) = A is not

usually a manifold of the right dimension (i.e. equal to the Index of ∂J).

I Existence of isotropy: Some solutions have an internal symmetry (e.g.

f : z 7→ z2 is invariant under the action of Z/2Z by z 7→ −z). So

X :=M0,1(A, J) has to be given some kind of orbifold structure.

I Lack of compactness: Usually one must compactify the solution space

by adding nodal curves that then must be glued together, greatly

complicating the required analysis.

I Lack of smoothness: One must use Banach space of maps f : S2 → M

(e.g. W k,p-maps) to do Fredholm analysis, but the reparametrization

group does not act differentiably on such a space.

In 1990s, great progress with these issues by Li-Tian, Fukaya–Ono and
others (Ruan, Siebert, . . . ). Emphasis on gluing analysis; sketchy treatment

of smoothness/topological issues in constructing charts, VFC.



Recent new developments: 6.

I Polyfolds: Hofer–Wysocki–Zehnder (2006 –now ) series of papers
completely redoing the analytic foundations. Gromov–Witten preprint:

arxiv 1107.2097

I Smooth Kuranishi atlases: McDuff–Wehrheim, arXiv 1208.1340:
recast the basic definitions of FO, FOOO in more categorical terms;
redid the topological aspects of the proof in a special case (no
nodes, no isotropy).

I Detailed treatment of Kuranishi structures: Fukaya–Oh–Ohta–Ono,
arXiv 1209.4410; many more details of the general case, including
smoothness of gluing.

I New, wholistic approach using “Donaldson divisors”: Ionel–Parker,
arXiv 1304.3472; more geometric approach initially suggested by
Cieliebak–Mohnke.

I Reworking of the Tian approach using “virtual manifolds”:
Chen–Li–Wang, arXiv 1306.3276. new way of dealing with the
nonsmooth action.



Finite dimensional reductions [FO], [FOOO], [MW], [CLW]: 7.

The moduli space X can be locally modelled by a finite dimensional
reduction (U,E , Γ, s, ψ), where

I the domain U is a smooth manifold, the obstruction space E ∼= Rn;

I the isotropy group Γ is a finite group acting diagonally on U × E ;

I the section s : U → E is induced by ∂J , and is Γ-equivariant;

I the footprint map ψ : s−1(0)→ X induces a homeomorphism s−1(0)/Γ→ F ,

where F ⊂ X is open.
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Kuranishi atlases [MW1]: 8.

Let X be a compact, metrizable space. A Kuranishi chart for X with
footprint F is a tuple K = (U,E , Γ, s, ψ) with F = imψ.

I A covering family of basic charts for X is a finite collection
(Ki )i=1,...,N of Kuranishi charts with X =

⋃N
i=1 Fi .

I Transition data for (Ki )i=1,...,N is a collection of charts

(KJ)J∈IK,|J|≥2 and coordinate changes (Φ̂IJ)I ,J∈IK,I(J as follows:

1. IK is the set of subsets I ⊂ {1, . . . ,N} s.t. FI :=
⋂

i∈IFi 6= ∅ ;
2. the sum chart KJ has footprint FJ =

⋂
i∈J Fi and additive obstruction

space EJ
∼= ⊕Ei∈J ; (in GW case must be built using some analysis)

3. all charts have the same dimension d := dimUI − dimEI = Ind(∂J)
(so dimUI ≤ dimUJ if I ⊂ J.)

4. Φ̂IJ is a coordinate change KI → KJ for every I , J ∈ IK with I ( J.
(to be explained)

A Kuranishi atlas K on X consists of
(
KJ , Φ̂IJ

)
as above satisfying the

cocycle condition. (to be explained)



Coordinate changes I (no isotropy): 9.

If I ⊂ J then FI ⊃ FJ and there is a coordinate change KI → KJ ,
consisting of a restriction KI → KI

∣∣
UIJ

followed by an inclusion

KI

∣∣
UIJ
→ KJ induced by an embedding φIJ : UIJ → UJ , where

I UIJ ⊂ UI (in grey) intersects the zero set s−1
I (0) in ψ−1

I (FJ);
I the (grey) image of φIJ : UIJ → UJ is a smooth submanifold with

“nice” normal bundle;
I there is an associated linear inclusion φ̂IJ : EI → EJ ;
I obvious compatibility conditions with footprint maps and sections;

(eg for x ∈ ψ−1
I (FJ), we have ψJ ◦ φIJ(x) = ψI (x) ∈ FJ)
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Cocycle condition and Kuranishi category (no isotropy) : 10.

Aim: each atlas K should have domain and bundle categories with
functor proj : EK → BK, where ObjBK =

⋃
I UI and the morphisms

MorBK =
⋃

I⊆J UIJ are defined by the coordinate changes.

I The cocycle condition ensures that composition is possible, i.e. if
φJK ◦ φIJ(x) is defined for x ∈ UIJ so is φIK (x) and they are equal.

I In practice, one can only construct weak atlases with the weak
cocycle condition, i.e. whenever both maps are defined, they are
equal.

I We also want the realization |K| :=
⋃

I UI/∼ of BK to have good
properties eg Hausdorff, a well-behaved metric...

Proposition ([MW1], §6): A weak Kuranishi atlas can be tamed to form a
Kuranishi atlas K with a “nice” realization

∣∣K∣∣.



From (weak) Kuranishi category to VFC (no isotropy): 11.

[MW1] Theorem B. Let K be an oriented, d-dimensional, weak, additive
Kuranishi atlas with trivial isotropy groups on a compact metrizable
space X . Then K determines a cobordism class of smooth, oriented,
compact manifolds, and an element [X ]virK in the Čech homology group
Ȟd(X ;Q). Both depend only on the cobordism class of K.

The class [X ]virK is represented by the zero set Z (s + ν) – which is a
manifold – of a transverse perturbation |s + ν| of the section |s| of
|proj| :

∣∣EK∣∣→ ∣∣K∣∣.
The perturbation ν is tricky to construct: there is an inclusion
ιX : X →

∣∣K∣∣ with image equal to Z (s), but Z (s) does NOT have

compact neighbourhood in
∣∣K∣∣; so need to work to ensure that Z (s + ν)

is compact.



Kuranishi atlases with isotropy [MW2], : 12.

Recall: An atlas is: K =
(
KI , Φ̂IJ

)
where (Ki ) is a covering family, KI are sum charts,

and each Φ̂IJ : KI → KJ is a coordinate change over FJ with cocycle condition for

I ⊂ J ⊂ K . When there is no isotropy, Φ̂IJ is a restriction to UIJ ⊂ UI followed by an

“inclusion” φIJ : UIJ → UJ . With isotropy, the picture changes a little:

For I ⊂ J, the group ΓJ :=
∏

i∈J Γi of KJ splits as ΓJ = ΓI × ΓJ\I .

The coordinate change is given by a subset ŨIJ ⊂ UJ where

I ŨIJ is ΓJ invariant, where ΓJ\I acts freely;

I the quotient ŨIJ/ΓJ\I
can be identified ΓI -equivar. with UIJ ⊂ UI ; we

get equivariant covering map ρIJ : ŨIJ → UIJ that intertwines s, ψ.

I the category BK has morphisms ŨIJ × ΓI with

s × t : ŨIJ × ΓI 3
(
x , γI

)
7→
(
γ∗I (ρIJ(x)), x

)
∈ UI × UJ ,

(these are morphisms from a subset of UI into UJ , coming from the group

actions and coord changes)



From the intermediate category to the VFC: 13.

The intermediate chart KI has no isotropy, but has orbifold domain and
bundle:

U I := UI/ΓI
, UI × EI := UI × EI/ΓI

; πI : UI → U I .

A Kur. atlas K has an intermediate domain category BK where

ObjBK =
⋃
I

U I , MorBK
=
⋃
I⊂J

U IJ , where U IJ = πJ(ŨIJ) ⊂ UJ .

I The functor BK → BK induces a proper map on objects and
morphisms. (inverse images of compact sets are compact).

I The previous work for the “no isotropy” case applies to BK and then
lifts to BK. So we can construct tamings and (multi)sections as
before.

I Thus get VFC represented by a weighted branched manifold, well
defined up to cobordism; completing the abstract theory.



Charts for the 2, 3-football orbifold: 14.
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Figure : X is S2 with two orbifold points of orders 2, 3. There are two basic
charts (U1,Z3), (U2,Z2) with images discs U i ⊂ X , and one transition chart
(UI ,Z2 × Z3) (where I = {1, 2}) with image the annulus U I = U1 ∩ U2.



Gromov–Witten case [MW2]: set up for basic chart : 15.

X =
{

f : S2 → (M, J)
∣∣ ∂J f = 0, f∗([S2]) = A

}
/G∞

.

To make chart at [f0] ∈ X with Γ = Stab([f0]), must

I Stabilize domain by adding two marked points 0, 1 and fix
parametrization f0 by fixing f0(0), f0(1); This is achieved via slicing
conditions: i.e. Choose Q2n−2 ⊂ M transverse to im f0, and require
f0(0), f0(1) ∈ Q;

I Extend v 0 := 0, v 1 = 1 to a (minimal) Γ-invariant tuple
~v = (v 0, . . . , vL−1);

I Choose Γ-invariant set of disjoint disc nbhds D f0 (v `) ⊂ S2 s.t.
f −1
0 (Q) ∩ D f0 (v `) = {v `} ∀`;

I Choose obstruction space E0 ⊂ C∞-sect
(
H) where H → S2 ×M is

bundle with H(z,x) = Hom0,1
J (TzS

2,TxM) s.t. E0 covers cokerDf0 (∂J)

I This gives a “geometrically defined” obstruction space
~E := ⊕γ∈ΓEγ0 , the sum of |Γ| copies of E0. (“Abstract” obstruction

spaces do not usually transform C1 smoothly under coordinate changes.)



Gromov–Witten case: a basic chart II: 16.

I Given ~w = (w 0, . . . ,wL−1) ∈ (S2)L define φγ,~w ∈ G∞ to be the
unique map s.t. 0 7→ wγ(0), 1 7→ wγ(1).

I Define U ⊂ ~E × (S2)L × nbhd(f0) by “Fredholm stabilization”:

U : =
{

(~ν, ~w , f )
∣∣ ∂J f =

∑
γ

(φ−1
γ,~w )∗νγ

∣∣∣
graphf

,

(normalization) w 0 = 0,w 1 = 1, (slicing) w ` = f −1(Q) ∩ D f0 (v `)
}

I Action of Γ: (~ν, ~w , f ) 7→ γ∗(~ν, ~w , f ) = (γ∗(~ν), γ∗(~w), f ◦ φγ,~w ), where(
γ∗(~ν)

)`
= νγ(`) =: (γ · ~ν)`,(

γ∗(~w)
)`

= φ−1
γ,~w (wγ(`)) = φ−1

γ,~w ((γ · ~w)`). (This preserves slicing

conditions and normalization γ∗(~w) = (0, 1, . . . ): you can’t just permute

the tuple ~w since we have normalized.)

I The chart is (U, ~E , Γ, s, ψ) where s(~ν, ~w , f ) = ~ν ∈ ~E ,
ψ(~ν, ~w , f ) = [f ].



Gromov–Witten case: a transition chart: 17.

Given (Ui , ~Ei , Γi , si , ψi ), pick i0 ∈ {1, 2} and define KI for I = {1, 2} with
domain i0-normalized; so UI ⊂ WI ,i0 where

WI ,i0 =
{

(~ν, ~w , f ) ∈ ~E1 × ~E2 × (S2)L1+L2 × nbhd(f0)
∣∣ w 0

i0 = 0,w 1
i0 = 1

}
.

I UI :=
{

(~ν, ~w , f )
∣∣ ∂J f =

∑
i=1,2,γ∈Γi

(φ−1
γ,~wi

)∗νγi

∣∣∣
graphf

, f (w `
i ) ∈ Qi

}
(here UI ⊂ WI,i0

; also must specify the ordering of the tuple ~wj , j 6= i0, more carefully)

I Action of ΓI depends on i0: with i0 = 1
I γ ∈ Γ1 acts by perm. and reparametrization (to preserve normalization)

γ∗(~ν1, ~ν2, ~w1, ~w2, f ) = (γ · ~ν1, ~ν2, φ
−1
γ,~w1

(γ · ~w1), φ−1
γ,~w1

(~w2), f ◦ φγ,~w1 ),

I γ ∈ Γ2 acts just by permutation

γ∗(~ν1, ~ν2, ~w1, ~w2, f ) = (~ν1, γ · ~ν2, ~w1, γ · ~w2, f ),

I the projection ρ1,I : UI ⊃ Ũ1,I → U1 is the forgetful map
(~ν1, ~ν2, ~w1, ~w2, f ) 7→ (~ν1, ~w1, f ) (and for i = 2 is forgetful map plus

renormalization. i.e. All elements of the construction are very natural.)



Further directions: 18.

I The previous slides attempt to explain how to construct a Kuranishi atlas
near the parts of X represented by curves with smooth domains.

I It remains to deal with nodal curves. Instead of using a fancy gluing
theorem that would give a smooth structure to the domains U near a
nodal curve, we will use the standard theorem in [Mc-Sal] that gives
continuity in the gluing parameters a but with evaluation maps depending
C 1 on a. This is enough to give a Kuranishi atlas whose domains are
stratified smooth. [Details still to be written, should be pretty straightforward]

I An interesting special case is when there is a regular J (e.g. for a space of
genus zero stable maps into CPn.) Then there is an orbifold Kuranishi
atlas (i.e. all E trivial) [Details still to be written]

I Potential generalizations: to curves in manifolds with S1 action; to curves
with intrinsic Lie group symmetries (e.g. Hamiltonian Floer homology
with time independent Hamiltonian [needs extra work to deal with the boundary]), to
Gromov–Witten invariants for symplectic orbifolds . . . [none of this done at all]
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