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This is a talk about my ongoing project with Katrin Wehrheim [MW1,2]
to clarify the construction of the virtual moduli cycle in the
Gromov—Witten context. Basic question: how can one count closed
J-holomorphic curves in a symplectic manifold in a way that is
independent of choices?

The talk will be divided into several parts.

Part 1. Explanation of the problem.

Part 2: Kuranishi atlases.

Part 3: Building charts with isotropy.



Counting J-holomorphic spheres: 3.

(M?" w, J) is a symplectic manifold with an w-tame almost complex
structure J. We want to count the number of J-holomorphic maps
f:(5%)) = (CUoo,j) — (M,J), with £.([S?]) = A € Hy(M,Z)
(modulo parametrization) that satisfy certain homological constraints:
e.g. if Y C M is a submanifold, count

4 ({f | 0=8,f =: L(df +Jofoj), f(oo) € y}/GOC>

where G, is the group of reparametrizations z +— az + b fixing co.



The virtual fundamental class VFC: 4.

More abstractly, we would like to show that the space of solutions X to
the Fredholm equation 8,f =0, £.([S?]) = A has a homology class

[X]"" € Ha(X)
(in the dimension d of the index of the Fredholm operator).

Then the count would just be the intersection number ev.. ([X]¥") -y [Y]
where ev is the evaluation map ev(f) = f(o0).

In the semi-positive case, one can often choose J so that X is a manifold
of dimension d; if noncompact, it often still has “boundary” of
codimension > 2, so that ev : X — M represents a well defined homology
class (independent of choice of J).



Problems with the naive (geometric) approach: s

» Nonregular J: Even if J is generic, the space of solutions
X := Mo1(A, J) to the Fredholm equation 8,f = 0, f.([S?]) = A is not
usually a manifold of the right dimension (i.e. equal to the Index of 9,).
> Existence of isotropy: Some solutions have an internal symmetry (e.g.

f .z +— Z° is invariant under the action of Z/2Z by z — —z). So
X := Mo,1(A, J) has to be given some kind of orbifold structure.

» Lack of compactness: Usually one must compactify the solution space
by adding nodal curves that then must be glued together, greatly
complicating the required analysis.

» Lack of smoothness: One must use Banach space of maps f : S = M
(e-g Wk”’—maps) to do Fredholm analysis, but the reparametrization
group does not act differentiably on such a space.

In 1990s, great progress with these issues by Li-Tian, Fukaya—Ono and
others (Ruan, Siebert, ...). Emphasis on gluing analysis; sketchy treatment
of smoothness/topological issues in constructing charts, VFC.



Recent new developments: 6.

» Polyfolds: Hofer—Wysocki—Zehnder (2006 —now ) series of papers
completely redoing the analytic foundations. Gromov-Witten preprint:
arxiv 1107.2097

» Smooth Kuranishi atlases: McDuff-Wehrheim, arXiv 1208.1340:
recast the basic definitions of FO, FOOQ in more categorical terms;
redid the topological aspects of the proof in a special case (no
nodes, no isotropy).

» Detailed treatment of Kuranishi structures: Fukaya—Oh—Ohta—Ono,
arXiv 1209.4410; many more details of the general case, including
smoothness of gluing.

» New, wholistic approach using “Donaldson divisors”: lonel-Parker,
arXiv 1304.3472; more geometric approach initially suggested by
Cieliebak—Mohnke.

» Reworking of the Tian approach using “virtual manifolds”:
Chen—Li-Wang, arXiv 1306.3276. new way of dealing with the
nonsmooth action.



Finite dimensional reductions [Fo], [FO0O], [MW], [CLW]: 7.
The moduli space X can be locally modelled by a finite dimensional
reduction (U, E, T, s,1), where

» the domain U is a smooth manifold, the obstruction space E =~ R",
» the isotropy group [ is a finite group acting diagonally on U x E;

» the section s : U — E is induced by 5_}, and is -equivariant;
| 4

-1
the footprint map 1 : s71(0) — X induces a homeomorphism (O)/r — F,
where F C X is open.

A~ :
\ 55 F = (s (0)/T)

T s o) r=2/2



Kuranishi atlases [mwaij: 8.

Let X be a compact, metrizable space. A Kuranishi chart for X with
footprint F is a tuple K = (U, E,T,s, ) with F = im .

» A covering family of basic charts for X is a finite collection
(Ki)i=1....n of Kuranishi charts with X = (J, F..
» Transition data for (K;)i=1,... v is a collection of charts

(KJ)Jeze,|uj>2 and coordinate changes () sez,,icu as follows:

1. Tk is the set of subsets I C {1,..., N} s.t. F:= ().o,Fi # 0;

2. the sum chart K has footprint F; = ;. Fi and additive obstruction
space E; = @Ejcy; (in GW case must be built using some analysis)

3. all charts have the same dimension d := dim U; — dim E; = Ind(9,)
(sodimU; < dimU;if I C J.)

4. $u is a coordinate change K; — K, for every I, J € Zxc with [ C J.
(to be explained)

A Kuranishi atlas K on X consists of (K}, <T>U) as above satisfying the
cocycle condition. (to be explained)



Coordinate Changes I (no isotropy)- 9.
If | C Jthen F; D F; and there is a coordinate change K; — K,
consisting of a restriction K; — K,}UU followed by an inclusion

K/|UU — K induced by an embedding ¢, : Uy — Uj, where

Uiy C Up (in grey) intersects the zero set s, *(0) in 1 }(F));

the (grey) image of ¢y : Uy — U, is a smooth submanifold with
“nice” normal bundle;

there is an associated linear inclusion (/A),J - E; — Ej;

obvious compatibility conditions with footprint maps and sections;
(eg for x € wl_l(FJ), we have 1, 0 ¢15(x) = i(x) € F))

vy

vy




Cocycle condition and Kuranishi category (noisotropy) : 10.

Aim: each atlas KC should have domain and bundle categories with
functor proj : Ex — By, where Objg,. = |J, U; and the morphisms
Morg, = U,g U, are defined by the coordinate changes.

» The cocycle condition ensures that composition is possible, i.e. if
@k © ¢1y(x) is defined for x € Uy, so is ¢k (x) and they are equal.

» |In practice, one can only construct weak atlases with the weak
cocycle condition, i.e. whenever both maps are defined, they are
equal.

> We also want the realization |KC| := |J, Ui/ ~ of Bx to have good
properties eg Hausdorff, a well-behaved metric...

Proposition ([MW1], §6): A weak Kuranishi atlas can be tamed to form a
Kuranishi atlas IC with a “nice” realization |IC|



From (weak) Kuranishi category to VFC (no isotropy): 11.

[MW1] Theorem B. Let K be an oriented, d-dimensional, weak, additive
Kuranishi atlas with trivial isotropy groups on a compact metrizable
space X. Then K determines a cobordism class of smooth, oriented,
compact manifolds, and an element [X ],"C” in the Cech homology group
Hq(X; Q). Both depend only on the cobordism class of K.

The class [X]{" is represented by the zero set Z(s + v) — which is a
manifold — of a transverse perturbation |s 4 v| of the section |s| of
Iproj| : [Ex| — |K|.

The perturbation v is tricky to construct: there is an inclusion

1x : X — |K| with image equal to Z(s), but Z(s) does NOT have
compact neighbourhood in ]IC|; so need to work to ensure that Z(s + v)
is compact.



Kuranishi atlases with isotropy (Mwa], : 12.

Recall: An atlas is: K = (K/, ;1;”) where (K;) is a covering family, K; are sum charts,
and each $U : K; — K} is a coordinate change over F; with cocycle condition for

I C J C K. When there is no isotropy, <T>U is a restriction to U;; C U, followed by an
“inclusion” ¢, : Uy — U,;. With isotropy, the picture changes a little:

For I C J, the group ' := HieJ
The coordinate change is given by a subset D[J C U, where

I of Kysplitsas Iy =T, xT .

> UU is [, invariant, where I j\; acts freely;

» the quotient UU/FJ\, can be identified I'j-equivar. with U;; C U;; we

get equivariant covering map pyy : UU — U}y that intertwines s, 1.

> the category Bx has morphisms LNJU x [} with
SX t: DU x> (x,’y,) — (“,/,*(pu(x)).,x) e U x Uy,

(these are morphisms from a subset of U, into U,, coming from the group
actions and coord changes)



From the intermediate category to the VFC: 13.

The intermediate chart K, has no isotropy, but has orbifold domain and
bundle:

U=, Ux =Y By m U Uy

A Kur. atlas K has an intermediate domain category B, where

Objg,_ =|JU;, Morg_ = |J U, where U, = m,(Uy) C U,.
I 1cJ

» The functor Bx — By induces a proper map on objects and
morphisms. (inverse images of compact sets are compact).

> The previous work for the “no isotropy” case applies to By- and then
lifts to Bx. So we can construct tamings and (multi)sections as
before.

» Thus get VFC represented by a weighted branched manifold, well
defined up to cobordism; completing the abstract theory.



Charts for the 2, 3-football orbifold: 14.

Figure : X is S® with two orbifold points of orders 2,3. There are two basic
charts (Ui, Z3), (U2, Z>) with images discs U; C X, and one transition chart
(Ui, Z> x Z3) (where | = {1,2}) with image the annulus U, = U; N U,.



Gromov—Witten case (mw2): set up for basic chart :

X:

{F:52 = (M.J) | Bsf =0, £(IS%) = A} .

To make chart at [fy] € X with [ = Stab([fy]), must

>

Stabilize domain by adding two marked points 0,1 and fix
parametrization fy by fixing f5(0), f5(1); This is achieved via slicing
conditions: i.e. Choose @2"~2 C M transverse to im fy, and require
fO(O)7 fO(l) €Q;

Extend v0 := 0, v! = 1 to a (minimal) I-invariant tuple
v=(0.. . vl
Choose l-invariant set of disjoint disc nbhds D (v*) C S? s.t.

fo {(Q)N DR(v') = {v'} V&,

Choose obstruction space Ey C C*-sect(7) where H — S? x M is
bundle with H, ,j = Hom$'(T,S?, TxM) s.t. Eq covers cokerDy,(9,)
This gives a “geometrically defined” obstruction space

E = @&, erEy, the sum of |I'| copies of Ey. (“Abstract” obstruction

spaces do not usually transform C! smoothly under coordinate changes.)

15.



Gromov—Witten case: a basic chart II: 16.

> Given w = (wW0,...,wt™1) € (52)" define ¢, 5 € G to be the
unique map s.t. 0 +— w?(© 1 — wr@),

> Define U C E x (52)L x nbhd(fy) by “Fredholm stabilization”:
u: = {(ﬁ7 W/7 f) | élf:Z((b;jﬁ)*Vv
S

(normalization) w® = 0, w! = 1, (slicing) w' = f_l(Q) N Dfo(vz)}

)
graphf

» Action of I': (#,w,f) — " (F,w, f) = (v*(¥),v* (W), f o ¢, %), where
(@) == (-7,
(’y (w )) = ¢ (W'Y(F) qﬁ;}/((’y w)%). (This preserves slicing
conditions and normallzatlon ~v*(w) = (0,1,...): you can’t just permute
the tuple w since we have normalized.)

—

» The chart is (U, E, I,s,1) where s(v,w,f) =0 € E,
(v, w, f) = [f].



Gromov—Witten case: a transition chart: 17.
Given (U;, E;, T}, si, ;). pick ig € {1,2} and define K, for | = {1,2} with
domain fp-normalized; so Uy C W j; where
Wi, = {(#, W, f) € E1 x B x (§°)"""2 x nbhd(f) | w) = 0,wj = 1}.

0,f = Z;:1,2,weri(¢;,i“v,-)*’/7 eraphf’ f(w') e Qi}

(here U; C W,),-O: also must specify the ordering of the tuple Wj,j # iy, more carefully)

> U = {(g,@, f)

» Action of I'j depends on iy: with ip =1

» ~ € 1 acts by perm. and reparametrization (to preserve normalization)
S a0 o o N -1 i -1 /-
’Y*(Vlv V2, Wi, W2, f) = (’Y s V1, 2, ¢%.,T/1 (H/ . W1)7 ’Y~M71(W2)’ fo qs'y.,v'vl)v
> ~ €[5 acts just by permutation
fy*(ﬂlaﬁ% V_‘}h W27 f) = (ﬁlafy . ﬁz, W]-”\/ : VT/27 f)’

> the projection py,: U; D L~/17, — U, is the forgetful map
(ﬁl, 172, W/l, V_|72, f) — (171, V_l71, f) (and for i = 2 is forgetful map plus

renormalization. i.e. All elements of the construction are very natural.)



Further directions: 18.

» The previous slides attempt to explain how to construct a Kuranishi atlas
near the parts of X represented by curves with smooth domains.

> It remains to deal with nodal curves. Instead of using a fancy gluing
theorem that would give a smooth structure to the domains U near a
nodal curve, we will use the standard theorem in [Mc-Sal] that gives
continuity in the gluing parameters a but with evaluation maps depending
C! on a. This is enough to give a Kuranishi atlas whose domains are
stratified smooth. [Details still to be written, should be pretty straightforward]

> An interesting special case is when there is a regular J (e.g. for a space of
genus zero stable maps into CP".) Then there is an orbifold Kuranishi
atlas (Ie all E triViaI) [Details still to be written]

> Potential generalizations: to curves in manifolds with S* action; to curves
with intrinsic Lie group symmetries (e.g. Hamiltonian Floer homology
with time independent Hamiltonian [needs extra work to deal with the boundary]), tO
Gromov-Witten invariants for symplectic orbifolds . . . none of this done at al]



A few recent References: 10.

[CLW13] Bohui Chen, An-Min Li, and Bai-Ling Wang, Virtual neighborhood technique
for pseudo-holomorphic spheres, arXiv:1306.3276.

[FOOO012] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Technical detail on Kuranishi
structure and Virtual Fundamental Chain, arXiv:1209.4410.

[HWZ4] H. Hofer, K. Wysocki, and E. Zehnder, Applications of Polyfold theory I:
The Polyfolds of Gromov—Witten theory, arXiv:1107.2097.

[IP] E. lonel and T. Parker, A natural Gromov-Witten fundamental class,
arXiv:1302.3472

[Mc-Sal] D. McDuff and D.A. Salamon, J-holomorphic curves and symplectic
topology, Colloquium Publications 52, American Mathematical Society, Providence,
RI, (2004), 2nd edition (2012).

[MW1] D. McDuff and K. Wehrheim Smooth Kuranishi atlases without isotropy,
arXiv:1208.1340.

[MW2] D. McDuff and K. Wehrheim Smooth Kuranishi atlases with isotopy, in
preparation



