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Calabi–Yau (CY) mirror symmetry

A CY variety will mean a smooth, proper algebraic variety X
over a field, together with a volume form Ω, that is, a
trivialization of the canonical line bundle KX .

Roughly (and incorrectly), mirror symmetry is an involution

(X ,Ω;ω + ib)←→ (X̌ , Ω̌; ω̌ + i b̌)

on CY varieties (X ,Ω) over C equipped with complexified
Kähler forms ω + ib on X an.

Deformations of the class [ω + ib] ∈ H1,1(X ) correspond to
first-order deformations of the variety X̌ in H1(TX̌ ).

More accurately (if incompletely), mirror symmetry is an
involution on maximally degenerating 1-parameter families of
projective CY varieties.
Complexified Kähler deformations of a fiber correspond to
complex deformations of a fiber in the mirror family.
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Example of a projective 1-parameter degeneration

We have to view the 1-parameter degenerations both
algebraically and analytically. For example, the Tate curve
Tate is a projective algebraic curve

{y2 + xy = x3 + a4(q)x + a6(q)} ⊂ P2(Z [[q]])

with a volume form Ω = dx/(2y + x).

The series a4, a6 ∈ Z [[q]] have radius of convergence 1, so, by
viewing them as holomorphic functions in a variable q in the
unit disc ∆ ⊂ C, we can make an analytic subvariety

Tatean ⊂ CP2 ×∆.

The fibers Tq of Tatean → ∆ for q 6= 0 are smooth of genus 1.

Tq carries a Kähler form obtained by pulling back the
Fubini–Study form on CP2, so it’s a symplectic manifold.

Tate is mirror to itself.
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Projective 1-parameter CY degenerations

A formulation of mirror pairs could identify a class of proper
schemes

X→ SpecQ [[q]] ,

smooth after inverting q, equipped with ample line bundles L

and trivializations Ω of the dualizing sheaf; and an involution

(X→ SpecQ [[q]] ,L,Ω)←→ (X̌→ SpecQ [[q]] , Ľ, Ω̌).

X and X̌ should be defined as projective schemes over the ring
of complex power series with positive radius of convergence,
so that one can make analytic models

X ⊂ CPN ×∆(r), X̌ ⊂ CPN ×∆(r).

Gross–Siebert’s toric degenerations program provides algebraic
mirror pairs, but convergence of the defining series is currently
missing.
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Formulations of mirror symmetry

Here are names of some formulations of CY mirror symmetry.

toric-degenerative homological Hodge-theoretic enumerative

Frobenius-algebraic

? ? X

X new! X easy

The arrows are implications, conjectured or proven.
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From partial HMS to enumerative mirror symmetry

Today, the standing assumption will be a partial statement of
homological mirror symmetry (HMS)—it will not involve arbitrary
coherent complexes, but only line bundles.

toric-degenerative Partial HMS HMS Hodge-theoretic enumerative

Frobenius-algebraic

? X
new!

? X

X new!
X

I’ll report that ‘partial HMS’ implies
1 full HMS;
2 Frobenius-algebraic mirror symmetry: an isomorphism of

Frobenius algebras between quantum cohomology and
tangential cohomology of the mirror; and therefore

3 enumerative mirror symmetry: a generating series that counts
rational curves equals a Yukawa coupling on the mirror.
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Homological mirror symmetry (HMS)

HMS involves a version of the Fukaya A∞-category F = F(X )
of Lagrangian submanifolds L ⊂ X .
I’ll be vague about the version I have in mind, because the
results rely only on general properties. Among them, F should
be a split-closed triangulated A∞ category, defined over a field
K which contains Q [[q]] [q−1], with a weak CY structure
F ' F∨[−n].
On the other side of the mirror we have a CY variety
X̌K → SpecK, and (a DG model for) its derived category
DX̌K of bounded complexes of coherent sheaves.
HMS asks for an A∞ quasi-equivalence F ' DX̌K.
Partial HMS involves the full subcategory B ⊂ DX̌K with
objects {Ľ⊗r}r≥0. It asks for a fully faithful A∞ embedding
B ↪→ F.
More generally, one may take B to be any split-generating full
subcategory of DX̌K.

T. Perutz From seen to unseen Lagrangians via algebraic geometry



Hypothesis: partial HMS with maximally unipotent
monodromy

We suppose:

Partial HMS holds: we have a fully faithful functor B→ F,
where B ⊂ D(X̌) is formed from powers of the polarizing line
bundle.
We have an analytic model

X̌ ⊂ CPN ×∆∗(r)

for the mirror family. Write X̌q for the fiber over q ∈ ∆∗(r).
The monodromy T ∈ AutHn(X̌q;C) (where q 6= 0) is
maximally unipotent, i.e.

(T − I )n+1 = 0, (T − I )n 6= 0 (n = dimC X̌q).

Up to a base-change q 7→ qk , it’s automatic that (T − 1)n+1 = 0.
Frobenius-algebraic (or Hodge-theoretic) mirror symmetry implies
(T − 1)n 6= 0, so in that sense, our monodromy assumption does
not reduce generality.
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From seen to unseen Lagrangians

Theorem (P.–Sheridan.)

Assuming partial HMS with maximally unipotent monodromy, any
chosen embedding B→ F extends—uniquely, up to natural
quasi-isomorphism—to a K-linear quasi-equivalence DX̌K ' F.

So to prove HMS, it’s enough to prove it for some collection
of Lagrangians which in practice you can ‘see’—the mirrors to
the line bundles Ľ⊗r .

X might be teeming with other Lagrangians L ⊂ X that you
don’t see. But algebraically, they are built from the seen ones.

The proof is short but invokes powerful tools:
1 Abouzaid’s generation criterion for Fukaya categories;
2 the Hochschild structure of algebraic varieties;
3 the limiting mixed Hodge structure on the cohomology of a

degenerating complex algebraic variety.
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A ring isomorphism

Theorem (P.–Sheridan.)

Assuming partial HMS with maximally unipotent monodromy, one
has a canonical isomorphism of graded unital K-algebras

κ : QH∗(X )→ HT ∗(X̌K)

from (small) quantum cohomology QH∗(X ) = H∗(X ;K) to the
tangential cohomology

HT ∗(X̌K) =
⊕

p+q=∗
Hp(ΛqTX̌K)

which maps the symplectic class [ω] ∈ QH2(X ) to the
Kodaira–Spencer class θ = KS(q(d/dq)) ∈ H1(T).

Meaning of θ: The family X̌→ ∆∗ is a map γ : ∆∗ →M into CY
moduli space satisfying the ODE q(dγ/dq) = θ ◦ γ.
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Frobenius-algebraic mirror symmetry

Theorem (P.–Sheridan)

We have already stated that partial HMS with maximally
unipotent monodromy implies that one has an isomorphism of
graded unital K-algebras

κ : QH∗(X )→ HT ∗(X̌K), κ[ω] = θ.

In addition, κ is a map of Frobenius algebras: for c ∈ QH2n(X ),
one has ∫

X
c =

∫
X̌q

Ω̌q ∧ (κ(c) · Ω̌q) ∈ K.

Ω̌q is the restriction to X̌q of the unique relative volume Ω̌ on
X̌K → SpecK for which Floer–Poincaré duality corresponds under HMS
to Serre duality:

HF (L0, L1) ∼= HF (L1, L0)∨ ←→ Ext (E0,E1) ∼= Ext (E1,E0)∨.
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Enumerative mirror symmetry

The following enumerative mirror symmetry statement follows
from Frobenius-algebraic mirror symmetry (Ω̌ as before):

Corollary

Partial HMS with maximally unipotent monodromy implies that∫
X

[ω]?n =

∫
X̌q

Ω̌q ∧
(
q
d

dq

)n

Ω̌q ∈ Q [[q]] .

We also have an exchange of summed Hodge numbers:

Corollary

Partial HMS with maximally unipotent monodromy implies that

bk(X ) =
∑

i+j=k

dimH j(ΛiTX̌K) =
∑

i+j=k

hn−i ,j(X̌ ).
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Where are we?

toric-degenerative Partial HMS HMS Hodge-theoretic enumerative

Frobenius-algebraic

? X
new!

? X

X new!
X

We’re missing a proof that HMS implies Hodge-theoretic
mirror symmetry: an isomorphism of QH∗(X ) with the
algebraic de Rham cohomology of H∗DR(X̌K) which respects
variations of Hodge structure.

We’re missing a proof that toric-degenerative mirror pairs
obey partial HMS. However, Gross and Siebert have already
presented the glimmerings of an argument.
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