From seen to unseen Lagrangians via algebraic geometry

Tim Perutz (University of Texas at Austin) Joint work with Nick Sheridan (Princeton/IAS)

AMS Special session: Advances in symplectic geometry and topology Mathematical Congress of the Americas, Guanajuato, Mexico

August 6, 2013

T. Perutz From seen to unseen Lagrangians via algebraic geometry

(1) マン・ション・

Calabi-Yau (CY) mirror symmetry

- A CY variety will mean a smooth, proper algebraic variety X over a field, together with a volume form Ω, that is, a trivialization of the canonical line bundle K_X.
- Roughly (and incorrectly), mirror symmetry is an involution

$$(X, \Omega; \omega + ib) \longleftrightarrow (\check{X}, \check{\Omega}; \check{\omega} + i\check{b})$$

on CY varieties (X, Ω) over \mathbb{C} equipped with complexified Kähler forms $\omega + ib$ on X^{an} .

- Deformations of the class [ω + ib] ∈ H^{1,1}(X) correspond to first-order deformations of the variety X̃ in H¹(TX̃).
- More accurately (if incompletely), mirror symmetry is an involution on *maximally degenerating 1-parameter families of projective CY varieties.*

Complexified Kähler deformations of a fiber correspond to complex deformations of a fiber in the mirror family.

Example of a projective 1-parameter degeneration

• We have to view the 1-parameter degenerations both algebraically and analytically. For example, the *Tate curve* <u>Tate</u> is a projective algebraic curve

$$\{y^2 + xy = x^3 + a_4(q)x + a_6(q)\} \subset \mathbb{P}^2(\mathbb{Z}[\![q]\!])$$

with a volume form $\Omega = dx/(2y + x)$.

The series a₄, a₆ ∈ ℤ [[q]] have radius of convergence 1, so, by viewing them as holomorphic functions in a variable q in the unit disc Δ ⊂ ℂ, we can make an analytic subvariety

$$\underline{\mathsf{Tate}}^{an} \subset \mathbb{CP}^2 \times \Delta.$$

The fibers T_q of $\underline{\text{Tate}}^{an} \to \Delta$ for $q \neq 0$ are smooth of genus 1.

- *T_q* carries a Kähler form obtained by pulling back the Fubini–Study form on CP², so it's a symplectic manifold.
- <u>Tate</u> is mirror to itself.

Projective 1-parameter CY degenerations

• A formulation of mirror pairs could identify a class of proper schemes

$$\mathfrak{X} \to \operatorname{Spec} \mathbb{Q} \llbracket q \rrbracket,$$

smooth after inverting q, equipped with ample line bundles \mathcal{L} and trivializations Ω of the dualizing sheaf; and an involution

$$(\mathfrak{X} o \mathsf{Spec}\, \mathbb{Q}\,\llbracket\!\![q]\!\!]\,, \mathfrak{L}, \Omega) \longleftrightarrow (\check{\mathfrak{X}} o \mathsf{Spec}\, \mathbb{Q}\,\llbracket\!\![q]\!\!]\,, \check{\mathfrak{L}}, \check{\Omega}).$$

• \mathfrak{X} and $\check{\mathfrak{X}}$ should be defined as projective schemes over the ring of complex power series with positive radius of convergence, so that one can make analytic models

$$\mathbb{X} \subset \mathbb{C}P^N \times \Delta(r), \quad \check{\mathbb{X}} \subset \mathbb{C}P^N \times \Delta(r).$$

 Gross-Siebert's toric degenerations program provides algebraic mirror pairs, but convergence of the defining series is currently missing.

Formulations of mirror symmetry

The arrows are implications, conjectured or proven.

T. Perutz From seen to unseen Lagrangians via algebraic geometry

From partial HMS to enumerative mirror symmetry

Today, the standing assumption will be a *partial* statement of homological mirror symmetry (HMS)—it will not involve arbitrary coherent complexes, but only line bundles.

I'll report that 'partial HMS' implies

- full HMS;
- Probenius-algebraic mirror symmetry: an isomorphism of Frobenius algebras between quantum cohomology and tangential cohomology of the mirror; and therefore
- enumerative mirror symmetry: a generating series that counts rational curves equals a Yukawa coupling on the mirror.

Homological mirror symmetry (HMS)

- HMS involves a version of the Fukaya A_∞-category F = F(X) of Lagrangian submanifolds L ⊂ X.
- I'll be vague about the version I have in mind, because the results rely only on general properties. Among them, *F* should be a split-closed triangulated A_∞ category, defined over a field K which contains Q [[q]] [q⁻¹], with a weak CY structure *F* ≃ *F*[∨][-n].
- On the other side of the mirror we have a CY variety $\check{\mathfrak{X}}_{\mathbb{K}} \to \operatorname{Spec} \mathbb{K}$, and (a DG model for) its derived category $D\check{\mathfrak{X}}_{\mathbb{K}}$ of bounded complexes of coherent sheaves.
- HMS asks for an A_{∞} quasi-equivalence $\mathcal{F} \simeq D\check{\mathfrak{X}}_{\mathbb{K}}$.
- Partial HMS involves the full subcategory B ⊂ DX_K with objects {L̃^{⊗r}}_{r≥0}. It asks for a fully faithful A_∞ embedding B ↔ F.

More generally, one may take \mathcal{B} to be any split-generating full subcategory of $D\check{\mathfrak{X}}_{\mathbb{K}}$.

From seen to unseen Lagrangians via algebraic geometry

Hypothesis: partial HMS with maximally unipotent monodromy

We suppose:

- Partial HMS holds: we have a fully faithful functor B → F, where B ⊂ D(X) is formed from powers of the polarizing line bundle.
- We have an analytic model

$$\check{\mathbb{X}} \subset \mathbb{C}P^N \times \Delta^*(r)$$

for the mirror family. Write \check{X}_q for the fiber over $q \in \Delta^*(r)$.

 The monodromy T ∈ Aut Hⁿ(X_q; C) (where q ≠ 0) is maximally unipotent, i.e.

$$(T-I)^{n+1}=0, \quad (T-I)^n \neq 0 \quad (n=\dim_{\mathbb{C}}\check{X}_q).$$

Up to a base-change $q \mapsto q^k$, it's automatic that $(T-1)^{n+1} = 0$. Frobenius-algebraic (or Hodge-theoretic) mirror symmetry implies $(T-1)^n \neq 0$, so in that sense, our monodromy assumption does not reduce generality.

Theorem (P.–Sheridan.)

Assuming partial HMS with maximally unipotent monodromy, any chosen embedding $\mathcal{B} \to \mathcal{F}$ extends—uniquely, up to natural quasi-isomorphism—to a \mathbb{K} -linear quasi-equivalence $D\check{\mathfrak{X}}_{\mathbb{K}} \simeq \mathcal{F}$.

- So to prove HMS, it's enough to prove it for some collection of Lagrangians which in practice you can 'see'—the mirrors to the line bundles *Ž*^{⊗r}.
- X might be teeming with other Lagrangians L ⊂ X that you don't see. But algebraically, they are built from the seen ones.
- The proof is short but invokes powerful tools:
 - Abouzaid's generation criterion for Fukaya categories;
 - 2 the Hochschild structure of algebraic varieties;
 - the limiting mixed Hodge structure on the cohomology of a degenerating complex algebraic variety.

・ロン ・回と ・ヨン・

Theorem (P.–Sheridan.)

Assuming partial HMS with maximally unipotent monodromy, one has a canonical isomorphism of graded unital \mathbb{K} -algebras

$$\kappa \colon QH^*(X) \to HT^*(\check{\mathfrak{X}}_{\mathbb{K}})$$

from (small) quantum cohomology $QH^*(X) = H^*(X; \mathbb{K})$ to the tangential cohomology

$$HT^*(\check{\mathfrak{X}}_{\mathbb{K}}) = \bigoplus_{p+q=*} H^p(\Lambda^q \mathfrak{T}\check{\mathfrak{X}}_{\mathbb{K}})$$

which maps the symplectic class $[\omega] \in QH^2(X)$ to the Kodaira–Spencer class $\theta = KS(q(d/dq)) \in H^1(\mathfrak{T})$.

Meaning of θ : The family $\check{\mathbb{X}} \to \Delta^*$ is a map $\gamma \colon \Delta^* \to \mathcal{M}$ into CY moduli space satisfying the ODE $q(d\gamma/dq) = \theta \circ \gamma$.

Frobenius-algebraic mirror symmetry

Theorem (P.–Sheridan)

We have already stated that partial HMS with maximally unipotent monodromy implies that one has an isomorphism of graded unital \mathbb{K} -algebras

$$\kappa \colon QH^*(X) \to HT^*(\check{\mathfrak{X}}_{\mathbb{K}}), \quad \kappa[\omega] = \theta.$$

In addition, κ is a map of Frobenius algebras: for $c \in QH^{2n}(X)$, one has

$$\int_X c = \int_{\check{X}_q} \check{\Omega}_q \wedge (\kappa(c) \cdot \check{\Omega}_q) \in \mathbb{K}.$$

 $\check{\Omega}_q$ is the restriction to \check{X}_q of the unique relative volume $\check{\Omega}$ on $\check{\chi}_{\mathbb{K}} \to \operatorname{Spec} \mathbb{K}$ for which Floer–Poincaré duality corresponds under HMS to Serre duality:

 $HF(L_0, L_1) \cong HF(L_1, L_0)^{\vee} \quad \longleftrightarrow \quad \operatorname{Ext}(\mathfrak{E}_0, \mathfrak{E}_1) \cong \operatorname{Ext}(\mathfrak{E}_1, \mathfrak{E}_0)^{\vee}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Enumerative mirror symmetry

The following enumerative mirror symmetry statement follows from Frobenius-algebraic mirror symmetry ($\check{\Omega}$ as before):

Corollary

Partial HMS with maximally unipotent monodromy implies that

$$\int_X [\omega]^{\star n} = \int_{\check{X}_q} \check{\Omega}_q \wedge \left(qrac{d}{dq}
ight)^n \check{\Omega}_q \in \mathbb{Q}\left[\!\!\left[q
ight]\!\!\right].$$

We also have an exchange of summed Hodge numbers:

Corollary

Partial HMS with maximally unipotent monodromy implies that

$$b_k(X) = \sum_{i+j=k} \dim H^j(\Lambda^i \mathfrak{T}\check{\mathfrak{X}}_{\mathbb{K}}) = \sum_{i+j=k} h_{n-i,j}(\check{X}).$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Where are we?

- We're missing a proof that HMS implies Hodge-theoretic mirror symmetry: an isomorphism of $QH^*(X)$ with the algebraic de Rham cohomology of $H^*_{DR}(\check{\mathfrak{X}}_{\mathbb{K}})$ which respects variations of Hodge structure.
- We're missing a proof that toric-degenerative mirror pairs obey partial HMS. However, Gross and Siebert have already presented the glimmerings of an argument.

- 4 同 6 4 日 6 4 日 6