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Goal: To describe an averaging procedure for Poisson structures

with singular symplectic foliations.



General Setting

Poisson Manifold

Let (M,Π) be a Poisson manifold with Poisson tensor Π ∈ Γ(
∧2 TM),

[Π,Π]Sch = 0

⇓

the characteristic distribution

C := Π](T ∗M) ≡ Span{Xf = Π]df
∣∣ f ∈ C∞M }

the symplectic foliation (S,ω) with (smooth) leafwise symplectic form ω

TS = C

ω(Xf , Xg) = Π(df, dg)

the Dirac structure D ⊂ TM ⊕ T ∗M ,

D = graph(Π) = {(Π](α), α)
∣∣ α ∈ T ∗M}



Leaf Preserving Noncanonical Actions

Let G be a connected compact Lie group and g its Lie algebra

Suppose we are given a smooth action Φ : G×M →M such that Φ is leaf
preserving on (M,S):

aM (m) =
d

dt

∣∣∣
t=0

[
Φexp(ta)(m)

]
∈ TmS ∀ a ∈ g,

but Φ is not canonical (Poisson) on (M,Π)

Question: Can we recover a G-invariant Poisson tensor Π (or Dirac structure D) from
(M,Π, G,Φ)?

Remark

The G-average of Π is not Poisson, in general.



Averaging the Leafwise Symplectic Form

Consider the G-average of the leafwise symplectic form ω

〈ω〉G :=

∫
G

Φ∗g ω dg

〈ω〉G is a G-invariant leafwise 2-form, closed on each leaf of S



Smoothness and Nondegeneracy Conditions

The smoothness of 〈ω〉G: the associated distribution D ⊂ TM ⊕ T ∗M ,

Dm :
{

(X,α) ∈ TmM ⊕ T ∗mM
∣∣ X ∈ Cm, α|Cm = iX〈ω〉G

}
is a smooth subbundle.

⇓

(S, 〈ω〉G ) is a smooth presymplectic foliation

⇓

G-invariant Dirac structure D

The nondegeneracy condition: 〈ω〉G is symplectic on each leaf of S

⇓

G-invariant Poisson structure Π



Criterion

Proposition

If there exists an R-linear mapping

ρ : g→ Ω1(M),

such that
iaMω = (the pull-back of ρa) ∀ a ∈ g,

then the smoothness condition holds and the G-invariant Dirac structure D is related
with the original one D by an exact gauge transformation, Bursztyn)

D = {(X,α− iXdQ)
∣∣ (X,α) ∈ D},

for a certain Q ∈ Ω1(M).



Main Observation (Poisson case)

One can apply the criterion to a neighborhood of a (singular) symplectic leaf S of (M,Π)

Claim

If the compact Lie group G acts in a Hamiltonian way with respect to the transverse
Poisson structure of the symplectic leaf S, then Π admits a G-invariant realization: In a
neighborhood of S, there exists a G-invariant Poisson tensor Π which is isomorphic to Π,

φ∗Π = Π.

Application: Normal forms of adiabatic type for Hamiltonian dynamics around a
symplectic leaf.

Tools:

Coupling Poisson structures (Vorobiev, Vaisman).

The averaging procedure for Poisson connections (Marsden, Montgomery & Ratiu).



Coupling Method

F-Coupling Poisson Structures

Let F be a regular foliation on a manifold M

V := TF the tangent bundle

V0 ⊂ T ∗M the annihilator of V

Definition

A Poisson bivector field Π ∈ Γ(
∧2 TM) is F-coupling if the distribution

H := Π](V0)

is a normal bundle of F ,
TM = H⊕ V.



Splitting

Proposition

Every F-coupling Poison tensor Π has the decomposition

Π = ΠH + ΠV,

where

the “regular part” ΠH ∈ Γ(
∧2H) is a bivector field of constant rank,

rank(ΠH) = dimH = codimF .

the “singular part” ΠV ∈ Γ(
∧2 V) is a leaf-tangent Poisson tensor,

Π]
V(T ∗M) ⊂ TF .



Properties

the characteristic distribution of Π

Π](T ∗M) = H⊕Π]
V(H0).

the symplectic leaves of Π intersect the leaves of F transversally and symplectically.

the set of singular points
Sing(Π) = Sing(ΠV).

ΠH is Poisson iff H is integrable.



Basic Example

A natural class of coupling Poisson structures comes from a neighborhood of a
symplectic leaf.

Proposition

Let Π be a Poisson tensor on (M,F ) and S ⊂M a symplectic leaf such that

TSM = TS ⊕ TSF .

Then, in a tubular neighborhood N of S in M , Π is an F-coupling Poisson tensor,

Π
∣∣
N

= ΠH + ΠV,

with
H
∣∣
S

= TS, ΠV = 0 on S.

Definition

The leaf-tangent Poisson bivector field ΠV on N is said to be the F-transverse Poisson
structure of Π around the symplectic leaf S.

Note: S is regular ⇔ ΠV ≡ 0.



Main Results

Transversally-Hamiltonian G-actions

On a foliated manifold (M,F) we are given

a leaf preserving action Φ : G×M →M of a connected compact Lie group G.

a Poisson tensor Π with an embedded symplectic leaf S ⊂M such that

TSM = TS ⊕ TSF .

Assume that

the G-action is canonical relative to the F-transverse Poisson structure ΠV of S,
with momentum map J : N → g∗

aM = Π]
V dJa, ∀ a ∈ g.



Averaging Theorem

Theorem

In a tubular neighborhood N of the leaf S, there exists an F-coupling Poisson structure
Π = ΠH + ΠV which is G-invariant and possesses the properties:

the characteristic distributions of Π and Π coincide on N .

the leafwise symplectic form of Π is just 〈ω〉G.

Poisson structures Π and Π are related by

Π
]

= Π] ◦ (Id− (dQ)] ◦Π])−1,

for a certain Q ∈ Γ(V0
N

)

the germs at S of Π and Π are isomorphic,

φ∗Π = Π, φ |S= id.



Averaging Theorem

Remark

The regularizing mapping ρ : g→ Ω1(M) is given by

ρa = −dFJa, (a ∈ g)

Remark

The gauge 1-form Q can be expressed in terms of the momentum map J.

In the case G = S1 = R�2πZ:

Q =
1

2π

∫ 2π

0

(t− π)(Flt
Π

]
VdJ

)∗ dH J dt

where dH = prH ◦ d is the H-dependent covariant exterior derivative



Adiabatic Condition

Proposition

The following two statements are equivalent:

the G-action is Hamiltonian relative to the “averaged” Poisson structure Π

one can choose the momentum map J : N → g∗ associated to the
transversally-Hamiltonian G-action so that

〈dHJ〉G = 0.

Remark

The adiabatic condition (Marsden,Montgomery & Ratiu) can be expressed in
cohomological terms.



Infinitesimal Version

Let E = TSM/TS be the normal bundle of the leaf S equipped with the fiberwise linear
G-action:

Corollary

There exists a equivariant exponential map f : NS(E)→ NS(M) such that the first
order approximation of the pull-back Poisson structure f∗Π defined around the zero
section S ↪→ E gives a G-invariant realization of the linearized Poisson structure of
the symplectic leaf S ⊂M of Π.



Example. Families of Hamiltonian Actions

Let

S be a connected symplectic manifold (viewed as a parameter space),

F a Poisson manifold equipped with a family of Hamiltonian actions of a compact
Lie group G,

x0 ∈ FG a fixed point of zero rank,

Then, the product Poisson structure Π on M = S × F admits a G-invariant realization
around the slice S × {x0}.



Integrable Geometric Data

Definition

Geometric data (H, σ, P ) on a foliated manifold (M,F) consist of

a normal bundle H of F .

a horizontal (coupling) 2-form σ ∈ Γ
∧2(V0) on M

a leaf-tangent Poisson tensor P ∈ Γ(
∧2 V)

Integrability of (H, σ, P ) = the structure equations

LXP = 0,

dHσ = 0,

prV([X,Y ]) = −P ]dσ(X,Y )

for any H-tangent projectable vector fields X,Y ∈ Γpr(H).



Parametrization and Factorization

Proposition

Every F-coupling Poisson structure Π on (M,F) is equivalent with integrable geometric
data (H, σ, P ) such that

σ
∣∣
H is nondegenerate

⇓

The structure equations for (H, σ, P ) give a factorization of the Jacobi identity for Π.



Coupling Dirac Structures

Removing the nondegeneracy condition, we get (Dufour & Wade, Vaisman)

Proposition

There exists a one-to-one correspondence between

integrable geometric data on (M,F )

and

Dirac structures D ⊂ TM ⊕ T ∗M satisfying the coupling condition: the tangent
distribution H = H(D,F)

Hm := {Z ∈ TmM
∣∣ ∃ α ∈ V0 & (Z,α) ∈ D}

is a normal bundle of F .



Gauge Equivalence

For a given horizontal 1-form Q ∈ Γ(V0), we define the Q-transform

TQ : (H, σ, P ) 7→ (H̃, σ̃, P )

by
H̃ =

(
Id− P ] ◦ (dQ)]

)
(H)

σ̃] = σ] − (dHQ)] + (dQ)] ◦ P ] ◦ dQ].

Definition

Two integrable geometric data are gauge equivalent if they are related by a Q-transform.



Symmetries of the Structure Equations

Proposition

The Q-transform leaves invariant the subset of all integrable geometric data on (M,F).



Induced G-Actions

Given a leaf preserving action Φ : G×M →M on (M,F)

⇓

the G-action on the set of all geometric data on (M,F)

Tg : (H, σ, P ) 7→ (dΦg−1(H), Φ∗gσ, Φ∗gP )

Criterion

A F-coupling Poisson (Dirac) structure is invariant with respect to the G-action on
(M,F) iff the associated integrable data

(H, σ, P ) are G− invariant.



G-Invariant Geometric Data

Proposition (Key Observation)

Let (H, σ, P ) be integrable data on (M,F). If a connected compact Lie group G acts
canonically on (M,P ) with momentum map J : M → g∗, then there exists a gauge
1-form Q ∈ Γ(V0) such that the “averaged” data (H, σ, P ) given by

H := Span{〈X〉G | X ∈ Γpr(H)}

σ := 〈σ〉G − 〈dQ · P · dQ〉G

are:

G-invariant,

Q-gauge equivalent to (H, σ, P ),

integrable.



G-Invariant Poisson and Dirac Structures

Corollary

If σ
∣∣
H is nondegenerate, then the F-coupling Poisson tensor Π associated to the

averaged data (H, σ, P ) is G-invariant.

In general, the triple (H, σ, P ) induces the G-invariant Dirac structure

D = graph(σ
∣∣
H)⊕ graph(P

∣∣
H0).



Poisson Diffeomorphism φ

Let Π0 and Π1 be two Poisson structures on (M,F) admiting a common symplectic
leaf S ⊂M which is transverse to F ,

TSM = TS ⊕ TSF

Criterion

If the integrable geometric data associated to the germs of Π0 and Π1 at S are gauge
equivalent, then there exists a local diffeomorphism φ around S such that

φ∗Π0 = Π1 and φ
∣∣
S

= id.



Moser’s Homotopy Method

a path of integrable geometric data t 7→ (Ht, σt, P ) joining the geometric data of Π0

and Π1

the family of coupling Poison strictures t 7→ Πt associated to (Ht, σt, P ) is
well-defined in a neighborhood of S for all t ∈ [0, 1]

the homotopy equation for Zt ∈ Γ(Ht)

LZtΠt +
dΠt

dt
= 0

is reduced to
iZtσt = −Q.

(Q is a gauge 1-form vanishing at S)

⇓

Poisson diffeomorphism φ = time-1 flow of Zt



Related Results

Equivariant Splitting Theorem (Miranda & Zung)

Coupling Cartan-Dirac structures (Wade)

Poisson transversals (Frejlich & Mǎrcut)
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