Transversally-Hamiltonian Group Actions Around Symplectic Leaves

Yury Vorobiev

University of Sonora (Hermosillo, México)

Mathematical Congress of the Americas 2013, Guanajuato, August 5-9, 2013

General Setting

2 Coupling Method

3 Main Results

Geometric Data and Poisson Foliations

5 Moser's Argument

<u>Goal</u>: To describe an averaging procedure for Poisson structures with singular symplectic foliations.

Poisson Manifold

Let (M,Π) be a Poisson manifold with Poisson tensor $\Pi \in \Gamma(\bigwedge^2 TM)$,

```
[\Pi,\Pi]_{\rm Sch} = 0
```

• the characteristic distribution

$$C := \Pi^{\sharp}(T^*M) \equiv \operatorname{Span}\{X_f = \Pi^{\sharp} df \mid f \in C_M^{\infty}\}$$

• the symplectic foliation (S, ω) with (smooth) leafwise symplectic form ω

 $T\mathcal{S} = C$

$$\omega(X_f, X_g) = \Pi(df, dg)$$

• the Dirac structure $D \subset TM \oplus T^*M$,

$$D = \operatorname{graph}(\Pi) = \{ (\Pi^{\sharp}(\alpha), \alpha) \mid \alpha \in T^*M \}$$

- \bullet Let G be a connected compact Lie group and $\mathfrak g$ its Lie algebra
- Suppose we are given a smooth action Φ : G × M → M such that Φ is leaf preserving on (M, S):

$$a_M(m) = \frac{d}{dt}\Big|_{t=0} \Big[\Phi_{\exp(ta)}(m)\Big] \in T_m \mathcal{S} \qquad \forall \ a \in \mathfrak{g},$$

• but Φ is not canonical (Poisson) on (M, Π)

Question: Can we recover a *G*-invariant Poisson tensor $\overline{\Pi}$ (or Dirac structure \overline{D}) from (M, Π, G, Φ) ?

Remark

The G-average of Π is not Poisson, in general.

 \bullet Consider the G-average of the leafwise symplectic form ω

$$\langle \omega \rangle^G := \int_G \Phi_g^* \; \omega \; dg$$

• $\langle\omega\rangle^G$ is a G-invariant leafwise 2-form, closed on each leaf of ${\mathcal S}$

Smoothness and Nondegeneracy Conditions

• The smoothness of $\langle \omega \rangle^G$: the associated distribution $\overline{D} \subset TM \oplus T^*M$,

$$\overline{D}_m : \left\{ (X, \alpha) \in T_m M \oplus T_m^* M \mid X \in C_m, \ \alpha|_{C_m} = \mathbf{i}_X \langle \omega \rangle^G \right\}$$

is a smooth subbundle.

 $(\mathcal{S},\langle\omega\rangle^G$) is a smooth presymplectic foliation

↓

$\bigcup_{G \text{-invariant Dirac structure } \overline{D}}$

• The nondegeneracy condition: $\langle \omega \rangle^G$ is symplectic on each leaf of ${\cal S}$

₩

G-invariant Poisson structure $\overline{\Pi}$

Proposition

If there exists an \mathbb{R} -linear mapping

$$\rho:\mathfrak{g}\to\Omega^1(M),$$

such that

$$\mathbf{i}_{a_M}\omega = (\textit{the pull-back of }
ho_a) \qquad \forall \ a \in \mathfrak{g},$$

then the smoothness condition holds and the *G*-invariant Dirac structure \overline{D} is related with the original one D by an exact gauge transformation, Bursztyn)

$$\overline{D} = \{ (X, \alpha - \mathbf{i}_X dQ) \mid (X, \alpha) \in D \},\$$

for a certain $Q \in \Omega^1(M)$.

One can apply the criterion to a neighborhood of a (singular) symplectic leaf S of (M, Π)

Claim

If the compact Lie group G acts in a Hamiltonian way with respect to the transverse Poisson structure of the symplectic leaf S, then Π admits a G-invariant realization: In a neighborhood of S, there exists a G-invariant Poisson tensor $\overline{\Pi}$ which is isomorphic to Π ,

$\phi^*\Pi=\overline{\Pi}.$

Application: Normal forms of adiabatic type for Hamiltonian dynamics around a symplectic leaf.

Tools:

- Coupling Poisson structures (Vorobiev, Vaisman).
- The averaging procedure for Poisson connections (Marsden, Montgomery & Ratiu).

\mathcal{F} -Coupling Poisson Structures

Let ${\mathcal F}$ be a regular foliation on a manifold M

- $\mathbb{V} := T\mathcal{F}$ the tangent bundle
- $\mathbb{V}^0 \subset T^*M$ the annihilator of $\mathbb V$

Definition

A Poisson bivector field $\Pi \in \Gamma(\bigwedge^2 TM)$ is \mathcal{F} -coupling if the distribution

 $\mathbb{H} := \Pi^{\sharp}(\mathbb{V}^0)$

is a normal bundle of \mathcal{F} ,

 $TM = \mathbb{H} \oplus \mathbb{V}.$

Proposition

Every \mathcal{F} -coupling Poison tensor Π has the decomposition

 $\Pi = \Pi_{\mathbb{H}} + \Pi_{\mathbb{V}},$

where

• the "regular part" $\Pi_{\mathbb{H}} \in \Gamma(\bigwedge^2 \mathbb{H})$ is a bivector field of constant rank,

 $\operatorname{rank}(\Pi_{\mathbb{H}}) = \dim \mathbb{H} = \operatorname{codim} \mathcal{F}.$

• the "singular part" $\Pi_{\mathbb{V}} \in \Gamma(\bigwedge^2 \mathbb{V})$ is a leaf-tangent Poisson tensor, $\Pi_{\mathbb{V}}^{\sharp}(T^*M) \subset T\mathcal{F}.$ $\bullet\,$ the characteristic distribution of $\Pi\,$

$$\Pi^{\sharp}(T^*M) = \mathbb{H} \oplus \Pi^{\sharp}_{\mathbb{V}}(\mathbb{H}^0).$$

- \bullet the symplectic leaves of Π intersect the leaves of ${\cal F}$ transversally and symplectically.
- the set of singular points

$$\operatorname{Sing}(\Pi) = \operatorname{Sing}(\Pi_{\mathbb{V}}).$$

• $\Pi_{\mathbb{H}}$ is Poisson iff \mathbb{H} is integrable.

Basic Example

A natural class of coupling Poisson structures comes from a neighborhood of a symplectic leaf.

Proposition

Let Π be a Poisson tensor on (M, \mathcal{F}) and $S \subset M$ a symplectic leaf such that

 $T_S M = TS \oplus T_S \mathcal{F}.$

Then, in a tubular neighborhood N of S in M, Π is an \mathcal{F} -coupling Poisson tensor,

 $\Pi\big|_N = \Pi_{\mathbb{H}} + \Pi_{\mathbb{V}},$

with

$$\mathbb{H}|_{S} = TS, \qquad \Pi_{\mathbb{V}} = 0 \quad on \quad S.$$

Definition

The leaf-tangent Poisson bivector field Π_V on N is said to be the \mathcal{F} -transverse Poisson structure of Π around the symplectic leaf S.

Note: S is regular $\Leftrightarrow \Pi_{\mathbb{V}} \equiv 0$.

Transversally-Hamiltonian G-actions

On a foliated manifold (M, \mathcal{F}) we are given

- a leaf preserving action $\Phi: G \times M \to M$ of a connected compact Lie group G.
- a Poisson tensor Π with an embedded symplectic leaf $S \subset M$ such that

 $T_S M = TS \oplus T_S \mathcal{F}.$

Assume that

• the G-action is canonical relative to the \mathcal{F} -transverse Poisson structure $\Pi_{\mathbb{V}}$ of S, with momentum map $\mathbb{J}: N \to \mathfrak{g}^*$

$$a_M = \Pi^{\sharp}_{\mathbb{V}} d\mathbb{J}_a, \qquad \forall \ a \in \mathfrak{g}.$$

Theorem

In a tubular neighborhood \overline{N} of the leaf S, there exists an \mathcal{F} -coupling Poisson structure $\overline{\Pi} = \overline{\Pi}_{\mathbb{H}} + \Pi_{\mathbb{V}}$ which is *G*-invariant and possesses the properties:

- the characteristic distributions of $\overline{\Pi}$ and Π coincide on \overline{N} .
- the leafwise symplectic form of $\overline{\Pi}$ is just $\langle \omega \rangle^G$.
- Poisson structures $\overline{\Pi}$ and Π are related by

$$\overline{\Pi}^{\sharp} = \Pi^{\sharp} \circ (\mathrm{Id} - (dQ)^{\sharp} \circ \Pi^{\sharp})^{-1},$$

for a certain $Q \in \Gamma(\mathbb{V}^0_{\overline{N}})$

• the germs at S of $\overline{\Pi}$ and Π are isomorphic,

$$\phi^*\Pi = \overline{\Pi}, \qquad \phi \mid_S = \mathrm{id}.$$

Remark

The regularizing mapping $\rho : \mathfrak{g} \to \Omega^1(M)$ is given by

$$\rho_a = -d_{\mathcal{F}} \mathbb{J}_a, \qquad (a \in \mathfrak{g})$$

Remark

The gauge 1-form Q can be expressed in terms of the momentum map \mathbb{J} .

In the case $G = \mathbb{S}^1 = \mathbb{R} / 2\pi \mathbb{Z}$:

$$Q = \frac{1}{2\pi} \int_0^{2\pi} (t - \pi) (\operatorname{Fl}_{\Pi_{\mathbb{V}}^{\sharp} d\mathbb{J}}^t)^* d_{\mathbb{H}} \, \mathbb{J} \, dt$$

where $d_{\mathbb{H}} = \mathrm{pr}_{H} \circ d$ is the \mathbb{H} -dependent covariant exterior derivative

Proposition

The following two statements are equivalent:

- the G-action is Hamiltonian relative to the "averaged" Poisson structure $\overline{\Pi}$
- one can choose the momentum map $\mathbb{J}:\overline{N}\to\mathfrak{g}^*$ associated to the transversally-Hamiltonian G-action so that

$$\langle d_{\mathbb{H}} \mathbb{J} \rangle^G = 0.$$

Remark

The adiabatic condition (Marsden, Montgomery & Ratiu) can be expressed in cohomological terms.

Let $E = T_S M/TS$ be the normal bundle of the leaf S equipped with the fiberwise linear G-action:

Corollary

There exists a equivariant exponential map $\mathbf{f}: N_S(E) \to N_S(M)$ such that the first order approximation of the pull-back Poisson structure $\mathbf{f}^*\overline{\Pi}$ defined around the zero section $S \hookrightarrow E$ gives a *G*-invariant realization of the linearized Poisson structure of the symplectic leaf $S \subset M$ of Π . Let

- S be a connected symplectic manifold (viewed as a parameter space),
- F a Poisson manifold equipped with a family of Hamiltonian actions of a compact Lie group G,
- $x_0 \in F^G$ a fixed point of zero rank,

Then, the product Poisson structure Π on $M = S \times F$ admits a G-invariant realization around the slice $S \times \{x_0\}$.

Definition

Geometric data (\mathbb{H}, σ, P) on a foliated manifold (M, \mathcal{F}) consist of

- a normal bundle \mathbb{H} of \mathcal{F} .
- a horizontal (coupling) 2-form $\sigma \in \Gamma \bigwedge^2(\mathbb{V}^0)$ on M

• a leaf-tangent Poisson tensor $P \in \Gamma(\bigwedge^2 \mathbb{V})$

Integrability of (\mathbb{H}, σ, P) = the structure equations

 $L_X P = 0,$

 $d_{\mathbb{H}}\sigma = 0,$ $\mathrm{pr}_{\mathbb{V}}([X, Y]) = -P^{\sharp}d\sigma(X, Y)$

for any \mathbb{H} -tangent projectable vector fields $X, Y \in \Gamma_{pr}(\mathbb{H})$.

Proposition

Every \mathcal{F} -coupling Poisson structure Π on (M, \mathcal{F}) is equivalent with integrable geometric data (\mathbb{H}, σ, P) such that

 $\sigma_{\mathbb{H}}$ is nondegenerate

The structure equations for (\mathbb{H}, σ, P) give a factorization of the Jacobi identity for Π .

Removing the nondegeneracy condition, we get (Dufour & Wade, Vaisman)

Proposition

There exists a one-to-one correspondence between

```
• integrable geometric data on (M, \mathcal{F})
```

and

• Dirac structures $D \subset TM \oplus T^*M$ satisfying the coupling condition: the tangent distribution $\mathbb{H} = \mathbb{H}(D, \mathcal{F})$

$$\mathbb{H}_m := \{ Z \in T_m M \mid \exists \alpha \in \mathbb{V}^0 \quad \& \quad (Z, \alpha) \in D \}$$

is a normal bundle of \mathcal{F} .

Gauge Equivalence

For a given horizontal 1-form $Q \in \Gamma(\mathbb{V}^0)$, we define the Q-transform

 $\widetilde{\sigma}^{\sharp}$

$$\mathcal{T}_Q : (\mathbb{H}, \sigma, P) \mapsto (\widetilde{\mathbb{H}}, \widetilde{\sigma}, P)$$
$$\widetilde{\mathbb{H}} = \left(\mathrm{Id} - P^{\sharp} \circ (dQ)^{\sharp} \right) (\mathbb{H})$$
$$= \sigma^{\sharp} - (d_{\mathbb{H}}Q)^{\sharp} + (dQ)^{\sharp} \circ P^{\sharp} \circ dQ$$

Definition

by

Two integrable geometric data are gauge equivalent if they are related by a Q-transform.

Proposition

The Q-transform leaves invariant the subset of all integrable geometric data on (M, \mathcal{F}) .

Given a leaf preserving action $\Phi:G\times M\to M$ on (M,\mathcal{F})

₩

the G-action on the set of all geometric data on (M, \mathcal{F})

 $\mathcal{T}_g : (\mathbb{H}, \sigma, P) \mapsto (d\Phi_{g^{-1}}(\mathbb{H}), \ \Phi_g^*\sigma, \ \Phi_g^*P)$

Criterion

A \mathcal{F} -coupling Poisson (Dirac) structure is invariant with respect to the G-action on (M, \mathcal{F}) iff the associated integrable data

 (\mathbb{H}, σ, P) are G – invariant.

Proposition (Key Observation)

Let (\mathbb{H}, σ, P) be integrable data on (M, \mathcal{F}) . If a connected compact Lie group G acts canonically on (M, P) with momentum map $\mathbb{J} : M \to \mathfrak{g}^*$, then there exists a gauge 1-form $Q \in \Gamma(\mathbb{V}^0)$ such that the "averaged" data $(\overline{\mathbb{H}}, \overline{\sigma}, P)$ given by

 $\overline{\mathbb{H}} := \operatorname{Span}\{\langle X \rangle^G \mid X \in \Gamma_{\operatorname{pr}}(\mathbb{H})\}$

$$\overline{\sigma} := \langle \sigma \rangle^G - \langle dQ \cdot P \cdot dQ \rangle^G$$

are:

- G-invariant,
- Q-gauge equivalent to (\mathbb{H}, σ, P) ,
- integrable.

Corollary

If $\overline{\sigma}|_{\overline{\mathbb{H}}}$ is nondegenerate, then the \mathcal{F} -coupling Poisson tensor $\overline{\Pi}$ associated to the averaged data $(\overline{\mathbb{H}}, \overline{\sigma}, P)$ is *G*-invariant.

• In general, the triple $(\overline{\mathbb{H}}, \overline{\sigma}, P)$ induces the *G*-invariant Dirac structure

$$\overline{D} = \operatorname{graph}(\overline{\sigma}|_{\overline{\mathbb{H}}}) \oplus \operatorname{graph}(P|_{\overline{\mathbb{H}}^0}).$$

• Let Π_0 and Π_1 be two Poisson structures on (M, \mathcal{F}) admiting a common symplectic leaf $S \subset M$ which is transverse to \mathcal{F} ,

 $T_S M = TS \oplus T_S \mathcal{F}$

Criterion

If the integrable geometric data associated to the germs of Π_0 and Π_1 at S are gauge equivalent, then there exists a local diffeomorphism ϕ around S such that

 $\phi^* \Pi_0 = \Pi_1$ and $\phi|_S = \mathrm{id}.$

Moser's Homotopy Method

- a path of integrable geometric data $t \mapsto (\mathbb{H}_t, \sigma_t, P)$ joining the geometric data of Π_0 and Π_1
- the family of coupling Poison strictures $t \mapsto \Pi_t$ associated to $(\mathbb{H}_t, \sigma_t, P)$ is well-defined in a neighborhood of S for all $t \in [0, 1]$
- the homotopy equation for $Z_t \in \Gamma(\mathbb{H}_t)$

$$L_{Z_t} \Pi_t + \frac{d\Pi_t}{dt} = 0$$

is reduced to

$$\mathbf{i}_{Z_t}\sigma_t = -Q.$$

(Q is a gauge 1 -form vanishing at S)

∜

Poisson diffeomorphism ϕ = time-1 flow of Z_t

- Equivariant Splitting Theorem (Miranda & Zung)
- Coupling Cartan-Dirac structures (Wade)
- Poisson transversals (Frejlich & Mărcut)