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Goal: To describe an averaging procedure for Poisson structures

with singular symplectic foliations.



General Setting

Poisson Manifold
Let (M,II) be a Poisson manifold with Poisson tensor IT € T'(A* T'M),
[IL, ]sech = 0
I
@ the characteristic distribution
C :=T*T"M) = Span{X; = IT"df | f € C¢}
o the symplectic foliation (S,w) with (smooth) leafwise symplectic form w
TS =C

w(Xy, Xg) = H(df,dg)
@ the Dirac structure D C TM & T*M,

D = graph(IT) = {(IT*(a), ) |« € T M}



Leaf Preserving Noncanonical Actions

@ Let G be a connected compact Lie group and g its Lie algebra

@ Suppose we are given a smooth action ® : G x M — M such that ® is leaf
preserving on (M, S):

o) = %L:O [@expim(m)] € TS Vaeg,

@ but ® is not canonical (Poisson) on (M, II)

Question: Can we recover a G-invariant Poisson tensor II (or Dirac structure D) from
(M,11,G, ®)?

The G-average of 11 is not Poisson, in general. l




Averaging the Leafwise Symplectic Form

o Consider the G-average of the leafwise symplectic form w

(W)€ = / D, wdg
G

o (w)“ is a G-invariant leafwise 2-form, closed on each leaf of S



Smoothness and Nondegeneracy Conditions

@ The smoothness of (w)“: the associated distribution D C TM & T* M,

D : {(X,a) € TnM @ T M | X € Cm, alc,, = iXW)G}

is a smooth subbundle.

4

(S, (w)“ ) is a smooth presymplectic foliation

U

G-invariant Dirac structure D

@ The nondegeneracy condition: (w)€ is symplectic on each leaf of S
I

G-invariant Poisson structure IT



Proposition

If there exists an R-linear mapping
pig— (M),

such that
ia,,w = (the pull-back of pa) Va € g,

then the smoothness condition holds and the G-invariant Dirac structure D is related
with the original one D by an exact gauge transformation, Bursztyn)

D ={(X,a—ixdQ) | (X,a) € D},

for a certain Q € Q' (M).




Main Observation (Poisson case)

One can apply the criterion to a neighborhood of a (singular) symplectic leaf S of (M, IT)

If the compact Lie group G acts in a Hamiltonian way with respect to the transverse
Poisson structure of the symplectic leaf S, then II admits a G-invariant realization: In a
neighborhood of S, there exists a G-invariant Poisson tensor I1 which is isomorphic to 11,

PI =TI

Application: Normal forms of adiabatic type for Hamiltonian dynamics around a
symplectic leaf.

Tools:

o Coupling Poisson structures (Vorobiev, Vaisman).

@ The averaging procedure for Poisson connections (Marsden, Montgomery & Ratiu).



Coupling Method

JF-Coupling Poisson Structures

Let F be a regular foliation on a manifold M

o V :=TF the tangent bundle

o VO ¢ T*M the annihilator of V

Definition

A Poisson bivector field TI € T'(\* TM) is F-coupling if the distribution

H := IT*(V°)

is a normal bundle of F,
TM =He V.




Splitting

Every F-coupling Poison tensor I1 has the decomposition

H:HH+HV7

where
o the “regular part” TIw € T(\*>H) is a bivector field of constant rank,

rank(Ilg) = dim H = codimF.

o the “singular part” Tly € T'(\*V) is a leaf-tangent Poisson tensor,

I, (T*M) C TF.




the characteristic distribution of IT

I (T* M) = H @ T1,(H°).

the symplectic leaves of II intersect the leaves of F transversally and symplectically.

@ the set of singular points
Sing(II) = Sing(Ily).

[Ty is Poisson iff H is integrable.



Basic Example

A natural class of coupling Poisson structures comes from a neighborhood of a
symplectic leaf.

Proposition

Let 11 be a Poisson tensor on (M, F ) and S C M a symplectic leaf such that
TsM =TS @ TsF.
Then, in a tubular neighborhood N of S in M, I is an F-coupling Poisson tensor,
H| N = Hu + Iy,
with

H| =TS, Ily=0 on S.

Definition

| N,

The leaf-tangent Poisson bivector field IIy; on N is said to be the F-transverse Poisson
structure of I1 around the symplectic leaf S.

Note: S is regular < Iy = 0.



Main Results

Transversally-Hamiltonian G-actions

On a foliated manifold (M, F) we are given

@ a leaf preserving action ® : G X M — M of a connected compact Lie group G.

@ a Poisson tensor IT with an embedded symplectic leaf S C M such that

TsM =TS @ TsF.

Assume that

@ the G-action is canonical relative to the F-transverse Poisson structure Ily of S,
with momentum map J: N — g~

am =14 dl,, Vacg.



Averaging Theorem

Theorem

In a tubular neighborhood N of the leaf S, there exists an F-coupling Poisson structure
I =1II

Iy + Iy which is G-invariant and possesses the properties:
the characteristic distributions of Il and TII coincide on N.
the leafwise symplectic form of TI s just (w)®.
Poisson structures I1 and II are related by

T =11 o (Id — (dQ)* o IT) Y,
for a certain Q € T'(V%)

the germs at S of II and II are isomorphic,

¢TI =TI, ¢ |s=id.




Averaging Theorem

The regularizing mapping p : g — Q*(M) is given by

Pa = _d}'JCH (a‘ € g)

The gauge 1-form Q) can be expressed in terms of the momentum map J.

In the case G = S* =R 27Z:

1 27 .
Q:g/o (t = m)(Fllp )" s It

where dg = pry od is the H-dependent covariant exterior derivative



Adiabatic Condition

The following two statements are equivalent:

@ the G-action is Hamiltonian relative to the “averaged” Poisson structure IT

@ one can choose the momentum map J : N — g* associated to the
transversally-Hamiltonian G-action so that

(du])€ = 0.

Remark

| \

The adiabatic condition (Marsden, Montgomery & Ratiu) can be expressed in
cohomological terms.




Infinitesimal Version

Let E = TsM/TS be the normal bundle of the leaf S equipped with the fiberwise linear

G-action:

There exists a equivariant exponential map f : Ns(E) — Ns(M) such that the first
order approximation of the pull-back Poisson structure £*II defined around the zero
section S — FE gives a G-invariant realization of the linearized Poisson structure of

the symplectic leaf S C M of II.




Example. Families of Hamiltonian Actions

Let

@ S be a connected symplectic manifold (viewed as a parameter space),

@ F' a Poisson manifold equipped with a family of Hamiltonian actions of a compact
Lie group G,

@ 1o € FC a fixed point of zero rank,

Then, the product Poisson structure IT on M = S x F' admits a G-invariant realization
around the slice S' x {zo}.



Integrable Geometric Data

Geometric data (H, o, P) on a foliated manifold (M, F) consist of

@ a normal bundle H of F.

o a horizontal (coupling) 2-form o € T' \*(V°) on M

o a leaf-tangent Poisson tensor P € T'(\* V)

Integrability of (H, o, P) = the structure equations
LxP =0,
duo = 0,
pry([X,Y]) = —P'do(X,Y)
for any H-tangent projectable vector fields X, Y € 'y, (H).



Parametrization and Factorization

Proposition

Every F-coupling Poisson structure I1 on (M, F) is equivalent with integrable geometric
data (H, o, P) such that

is nondegenerate

I

The structure equations for (H, o, P) give a factorization of the Jacobi identity for II.

U|IHI




Coupling Dirac Structures

Removing the nondegeneracy condition, we get (Dufour & Wade, Vaisman)

Proposition

There exists a one-to-one correspondence between

o integrable geometric data on (M, F )

and

o Dirac structures D C TM & T M satisfying the coupling condition: the tangent
distribution H = H(D, F)

Hp={Z€TmM |JaecV’ & (Z,a)eD}

is a normal bundle of F.




Gauge Equivalence

For a given horizontal 1-form @ € T(V"), we define the Q-transform

T4 : (H, 0, P) — (H,5, P)
by _
H= (Id - P' o (dQ)") (H)

& =0 — (deQ)* + (dQ)* o P* 0 dQ".

Definition

Two integrable geometric data are gauge equivalent if they are related by a Q-transform.




Symmetries of the Structure Equations

Proposition

The Q-transform leaves invariant the subset of all integrable geometric data on (M, F).




Induced G-Actions

Given a leaf preserving action ® : G x M — M on (M, F)
I

the G-action on the set of all geometric data on (M, F)

Ty : (H,0, P) = (d®,-1 (H), ®)a, O;P)

A F-coupling Poisson (Dirac) structure is invariant with respect to the G-action on
(M, F) iff the associated integrable data

(H,0,P) are G — invariant.




G-Invariant Geometric Data

Proposition (Key Observation)

Let (H, o, P) be integrable data on (M, F). If a connected compact Lie group G acts
canonically on (M, P) with momentum map J : M — g%, then there exists a gauge
1-form Q € T(V°) such that the “averaged” data (H,o, P) given by

H := Span{(X)® | X € I'p,(H)}
7= (0)° — (dQ- P-dQ)°

are:

o G-invariant,
o (Q-gauge equivalent to (H, o, P),

o integrable.




G-Invariant Poisson and Dirac Structures

If E’ﬁ is nondegenerate, then the F-coupling Poisson tensor II associated to the
averaged data (M, @, P) is G-invariant.

o In general, the triple (H, @, P) induces the G-invariant Dirac structure

D = graph(c|;) @ graph(P|o).



Poisson Diffeomorphism ¢

o Let IIp and II; be two Poisson structures on (M, F) admiting a common symplectic
leaf S C M which is transverse to F,

TsM =TS8 & TsF

If the integrable geometric data associated to the germs of Ily and 11, at S are gauge
equivalent, then there exists a local diffeomorphism ¢ around S such that

¢ =TI, and ¢|, =id.




Moser's Homotopy Method

@ a path of integrable geometric data ¢t — (H, o+, P) joining the geometric data of Il
and IT;

o the family of coupling Poison strictures ¢ — II; associated to (Hy, oy, P) is
well-defined in a neighborhood of S for all ¢ € [0, 1]

@ the homotopy equation for Z; € I'(H;)

dIl
LZth + TI: = 0
is reduced to
iZtG't = —Q

(Q is a gauge 1-form vanishing at S)

Poisson diffeomorphism ¢ = time-1 flow of Z;



Related Results

o Equivariant Splitting Theorem (Miranda & Zung)
@ Coupling Cartan-Dirac structures (Wade)

@ Poisson transversals (Frejlich & M3rcut)
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