
SYMPLECTIC VORTICES WITH FIXED HOLONOMY AT INFINITY

E. GONZALEZ, A. OTT, C. WOODWARD, AND F. ZILTENER

Abstract. Let Σ be a Riemann surface with cylindrical ends, G a compact, connected
Lie group and let X denote a compact symplectic manifold with a Hamiltonian G-action.
Given a conjugacy class associated to each end, we define a moduli space of symplectic
vortices which generalizes the moduli spaces of parabolic bundles introduced by Mehta
and Seshadri. Using the moduli spaces we construct gauged Gromov-Witten invariants
for convex target.
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1. Introduction

Let Σ be a Riemann surface, G a compact Lie group, and X a compact Hamilton-
ian G-manifold equipped with an invariant compatible almost complex structure J . A
gauged J-holomorphic map from Σ to X consists of a principal-bundle-with-connection
(P,A) and a section u of the associated X-bundle, holomorphic with respect to the al-
most complex structure on P (X) determined by the connection A. This space has a
natural action of the group of gauge transformations of the bundle. The moduli space of
symplectic vortices M(Σ, X) is obtained from the symplectic quotient construction; this
generalizes the Atiyah-Bott construction of the moduli space of flat bundles on Σ, which
is the case that X is trivial. In the case that Σ has cylindrical ends, one obtains a natural
moduli space M(Σ, X, µ) by fixing the holonomies µ of the connection around the circles
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at infinity. In the case that X is trivial, these are the moduli spaces of parabolic bundles
considered by Mehta-Seshadri [8].

In this paper we construct a compactified moduli space M(Σ, X, µ) of polystable sym-
plectic vortices. These moduli spaces are expected to play a role in various factorization
theorems, in particular, the generalization of orbifold quantum cohomology to contin-
uous Lie groups. In the case of the circle group, part of this project is carried out by
Mundet-Tian [6]. A polystable symplectic vortex consists of a symplectic vortex on the
principal component, and a collection of holomorphic sphere and cylinder bubbles such
that each bubble has at least three special points. (In the case G = S1, the compactifi-
cation is a special case of [6] in which gradient lines do not appear.) The main result is
the following. Let E : M(Σ, X, µ)→ R denote the energy functional.

Theorem 1.0.1. For any collection µ of rational holonomies, and any energy bound

C > 0, the intersection M(Σ, X, µ) ∩ E−1(C) is a compact Hausdorff space.

Our proof uses a somewhat different approach to compactness than the one described
in [6]. Namely, we use a generalization of the invariant symplectic action introduced
in Gaio-Salamon [4] that we call the bi-invariant symplectic action. This connection
depends on a loop x in X and the choice of two connections a, a0 on the trivial G-
bundle on X; it measures the equivariant symplectic area necessary to contract x to
a a0-covariant constant loop. Much of the paper is taken up by a definition of this
notion of action, and a comparison to the relative symplectic action for clean Lagrangian
intersections introduced by Pozniak [10].

We thank Constantin Teleman for encouragement.

2. Vortices with fixed holonomy

2.1. Bundles with fixed holonomy. In the case of trivial target the theory that we
wish to develop reduces to the Mehta-Seshadri theory of parabolic bundles [8]. Let G be
a compact, 1-connected Lie group. We denote by T a maximal torus and W the Weyl
group. Let t be the Lie algebra of T and t+ a choice of positive chamber, so that α0 ∈ t∗

is the highest root. The Weyl alcove A is the subset of t+ defined by

A := {ξ ∈ t+, α0(ξ) ≤ 1}.

The sequence of maps A → T → G given by exponential and inclusion respectively
induce isomorphisms of quotient spaces

A ∼= T/W ∼= G/Ad(G).

For any µ ∈ A we denote by Cµ the corresponding conjugacy class.

Let Σ be a compact, oriented surface with n ≥ 0 boundary components, P → Σ be a
principal G-bundle. The space A(P ) of connections on P is an affine space modelled on
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Ω1(Σ, P (g)) the space of one-forms with values in the adjoint bundle P (g). The choice
of an invariant inner product 〈·, ·〉g on g induces a map

Ω1(Σ, P (g))2 → Ω2(Σ), (a1, a2) 7→ 〈a1 ∧ a2〉g
by combining the wedge product and metric. This induces on A(P ) the structure of an
infinite-dimensional symplectic manifold with symplectic form given by

(1) (a1, a2) 7→
∫

Σ

〈a1 ∧ a2〉g.

The group of gauge transformations

G(P ) = {a : P → P, a(pg) = a(p)g∀g ∈ G}
acts on A(P ) via pull-back. The infinitesimal action is given by

Ω0(Σ, P (g))→ Ω1(Σ, P (g)), ξ 7→ −dAξ.

The action preserves the symplectic form (1) and has moment map given by the curvature

A(Σ, G)→ Ω2(Σ, g), A 7→ FA.

In the case that Σ has boundary, the gauge group fits into an exact sequence

1→ G∂(P )→ G(P )→ G(∂P )→ 1

where G∂(Σ) is the group of gauge transformations that equal to the identity on the
boundary. The symplectic quotient

M(P, ∂P ) = A[(P )/G∂(P )

may be identified with the moduli space of flat connections with framing on the boundary.
The residual group G(∂P ) acts on M(P, ∂P ) by changing the framing on the boundary,
with moment map given by restriction to the boundary

Φ : M(P, ∂P )→ A(∂P ).

The G(∂P )-orbits on A(∂P ) are parametrized by conjugacy classes, via the map given
by measuring the holonomy around each boundary component. For any µ ∈ An, where
n is the number of boundary components, we denote by Oµ ⊂ A(∂P ) the orbit labelled
by µ ∈ An. The symplectic quotient

M(P, µ) = Φ−1(Oµ)/G(∂P ),

is the moduli space of flat connections with fixed holonomies exp(µ) around the boundary.
Let

M(Σ, µ) =
⋃
P

M(P, µ)

denote the union over topological types of bundles P → Σ, the moduli space of flat
bundles with fixed holonomies.

Lemma 2.1.1. There exists a homeomorphism

M(Σ, µ)→ {ϕ ∈ Hom(π1(Σ), G), ϕ(γi) ∈ Cµi , i = 1, . . . , n} /G.
For generic µ, the space M(Σ, µ) is a compact orbifold.
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Proof. Any flat bundle is determined by its holonomies up to conjugacy; conversely, it
is straightforward to construct from a representation a bundle with that holonomy. For
the second claim, see [9]. �

The moduli spaces M(Σ, µ) have a holomorphic description due to Mehta-Seshadri
[8], see also [1], [11], as follows. Let PC → Σ be a holomorphic principal GC-bundle.

Definition 2.1.2. A quasiparabolic structure at a point z ∈ Σ is a reduction of structure
group of Ez to a parabolic subgroup P ⊂ G, that is, a point in the quotient σz ∈ Ez/P .
A parabolic structure is a quasiparabolic structure σz ∈ Ez/P together with conjugacy
class C ⊂ G of the type specified by the parabolic subgroup. That is, the Levi subgroup
L of the parabolic P is isomorphic to the centralizer Zg of any point g in the conjugacy
class C. A parabolic bundle is semistable if a certain inequality is satisfied for each
reduction of E to a maximal parabolic subgroup (at least, if none of the markings µj are
contained in the opposite wall of the Weyl alcove, see [11]).

On the set of semistable parabolic bundles one defines a grade equivalence relation,
which equates parabolic bundles if their associated graded bundles are isomorphic. Let
MC(Σ, µ) denote the moduli space of grade-equivalence classes of semistable parabolic
bundles. Narasimhan-Mehta-Seshadri [8] and extensions [3], [1], [11] show that

Theorem 2.1.3. MC(Σ, µ) is a normal projective variety homeomorphic to M(Σ, µ).

In the case that each conjugacy class µj has finite order, one can describe MC(Σ, µ)

in terms of equivariant bundles for a finite group action. Let Σ̃ → Σ be a totally
ramified ZN -covering, such that the order of each µj divides N . Suppose we are given a

ZN -equivariant holomorphic principal GC-bundle Ẽ → Σ̃, with the following property:
consider a local trivialization near sj in which the generator of ZN acts by gj, and suppose
that exp(µj) = gj. At each puncture glue in the trivial bundle D×GC over the disk via
the transition map

(2) (z, g) 7→ (z, exp(N ln(z)µj/2πi)g).

The group ZN acts freely on the resulting completed bundle and the quotient is a holo-
morphic principal GC-bundle E over Σ. The bundle E has a parabolic reduction at the
fiber sj, given as the image of (0, Pj) in the local trivialization, where Pj is the parabolic
corresponding to ξj; this is independent of the local trivializations used above. See [8],
[11] for proof of the following.

Proposition 2.1.4. Mapping Ẽ to E defines an equivalence of categories between equi-
variant bundles on Σ̃ and parabolic bundles on Σ preserving the semistability condition.

2.2. Gauged holomorphic maps. We denote by j0 the standard complex structure
on R×S1'R×R/Z and denote the coordinates in this space by (s, t). Let (Σ, ωΣ, j) be
a Riemann surface without boundary with a compatible area form.
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Definition 2.2.1. We say that (Σ, ωΣ, j) has admissible cylindrical ends iff there exists
a compact subset K ⊆ Σ, a non-negative integer n and maps φi : (0,∞)× S1 → Σ that
are diffeomorphisms onto their image, for i = 1, . . . , n, such that the following holds.
The surface Σ is the disjoint union of K and the images of the maps φi. Furthermore,
φ∗i j = j0 and there exist numbers κi, Ci > 0 such that

φ∗iωΣ = C2
i e
−2κisds ∧ dt.

Let Σ be a Riemann surface with n admissible cylindrical ends.

Let P → Σ be a principal G-bundle.

Definition 2.2.2. A framing on the i-th end of P is a principal G-bundle Pi → S1

and an isomorphism of P with π∗Pi along the i-th end, where π : S1 × R → S1 is the
projection.

Suppose that P is equipped with a framing on each end. We denote by A(P ) the space
of smooth connections on P with asymptotic limits at infinity along each end, that is,
there exists a connection limi(A) on Pi such that

(3) lim
i

(A)(θi) = lim
ri→∞

A(ri, θi), i = 1, . . . , n.

Let X be a compact, connected Hamiltonian G-manifold with moment map Φ : X → g∗.
Consider the associated bundle

π : P (X) = (P ×X)/G→ Σ.

Let Γ(Σ, P (X)) denote the space of asymptotically constant sections of P (X), that is,
sections u with a constant limit

lim
i

(u) := lim
ri→∞

ui(ri, θi)

along each end. I we denote by zi the point at infinity in each cylindrical end, then let
u be the extension of u so that u(zi) = limi(u). Let

A(P )× J (X)G → J (P (X)), (A, J) 7→ JA

denote the map which assigns to any connection and invariant almost complex structure
on X the almost complex structure on P (X) determined by the splitting induced by A.

We define a suitable notion of energy of a pair (A, u) as follows. Equip Σ with the
metric with cylindrical form on the ends. We wish to consider vortices for area forms
with suitable exponential decay on the cylindrical ends.

Definition 2.2.3. An area form ωΣ ∈ Ω2(Σ) is admissible if and only if on each cylin-
drical end, with coordinates s, t, there exists constants c, C > 0 such that the following
estimates hold: if ωΣ = λ2(s, t)ds ∧ dt then

|λ(s, t)| ≤ Ce−cs, 9|dλ|2 −∆(λ2) ≤ c

check ....
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In particular, the form e−csds ∧ dt is admissible for c > 0.

Let X,ω,G, 〈·, ·〉g,Φ be as above, Σ be a real surface (not necessarily orientable), P
a principal G-bundle over Σ, 〈·, ·〉X and 〈·, ·〉Σ be Riemannian metrics on X and Σ, and
(A, u) ∈ A(P )× Γ(P (X)). We define the energy density of (A, u) to be the function

e(A,u) := e
〈·,·〉X ,〈·,·〉Σ
(A,u) :=

1

2

(
|dAu|2 + |FA|2 + |u∗P (Φ)|2

)
: Σ→ R,

where the norms are w.r.t. the metrics 〈·, ·〉X and 〈·, ·〉Σ. Furthermore, we define the
energy of (A, u) to be the integral

E(A, u) :=

∫
Σ

e(A,u)dµ〈·,·〉Σ ,

where µ〈·,·〉Σ is the measure on Σ induced by 〈·, ·〉Σ. As in the case of ordinary pseudo-
holomorphic maps, there is a relation of the energy to a suitable notion of equivariant
symplectic area. Recall that the Cartan construction gives rise to a map

A(P )× ΩG(X)→ Ω(P (X))

given by

(A, β) 7→ πbasic((p
∗
2β) ∧ (p∗1A))

where p1, p2 are the projections of P ×X on the factors and πbasic is projection on the
subspace of basic forms. Applying this to the equivariant symplectic form ωG ∈ Ω2

G(X),
for each A we obtain a closed two-form

ωP (X),A ∈ Ω2(Σ, P (X)), π∗ωP (X),A = p∗2ωG + d(p∗1A, p
∗
2Φ).

Definition 2.2.4. The equivariant symplectic area of (A, u) ∈ A(P )× Γ(P (X)) is

D(A, u) :=

∫
Σ

u∗(ωP (X),A)

if finite.

Definition 2.2.5. Given JX ∈ J (X)G, for each section u ∈ Ω0(Σ;P (X)) define the
operator

∂A(u) :=
1

2
(du+ JA(u) ◦ du ◦ j) ∈ Ω0,1(Σ;u∗T vertP (X)).

Lemma 2.2.6. The energy and equivariant symplectic area of a pair (A, u) are related
by

(4) E(A, u) = D(A, u) +

∫
Σ

(
|∂Au|2 +

1

2
|FA + u∗P (Φ)ωΣ|2

)
ωΣ.

Proof. As in [2, Proposition 3.1]. �

Definition 2.2.7. A gauged holomorphic map is a pair (A, u) ∈ A(P )× Γ(P (X)) with
∂Au = 0. Let A(P,X) denote the space of gauged holomorphic maps of finite energy.
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Later it will be useful to consider u : Σ → P (X) as a pseudoholomorphic map to
P (X). The latter can be given a symplectic form as follows. Let ωΣ ∈ Ω2(Σ) be an area
form on Σ. For any c > 0 let

(5) ωA,c = ωA + cπ∗ωΣ ∈ Ω2(P (X)).

Lemma 2.2.8. Let Σ, X be compact. For any c1 > 0, there exists a c2 > 0 such that if
sup |A|C1 < c1 and c > c2 then ωA,c ∈ Ω2(P (X)) is symplectic.

Proof. It suffices to add on a sufficiently large multiple of π∗ωΣ so that ωA,c is positive
on the horizontal subspace. Since the norm of ωA on the horizontal subspace depends
linearly on the C1-norm of the connection and the moment map, the claim follows. �

The almost complex structure JA determined by J ∈ J (X)G and the connection is
automatically compatible with ωA,c. We denote by gA,c the metric determined by JA, ωA,c
on P (X), and ‖ · ‖A,c the corresponding norm. For sections u of P (X) define

EA,c(u) =

∫
Σ

gA,c(du, du), DA,c(u) =

∫
Σ

u∗ωA,c

denote the corresponding energy and equivariant symplectic area, so that the energy-
action relation for pseudoholomorphic u holds

EA,c(u) = DA,c(u).

Definition 2.2.9. A gauged holomorphic map with fixed holonomies µ ∈ An is a pair
(A, u) ∈ H(P,X) with limiA = µidθi for each cylindrical end i = 1, . . . , n as in (3).
Denote by H(P,X, µ) the space of gauged holomorphic maps with fixed holonomies µ.

2.3. Vortices with fixed holonomy. We define a moduli space of symplectic vortices
using the symplectic quotient construction for the gauge group action on H(P,X, µ).
Define a formal (possibly degenerate) closed two-form on H(P,X, µ) by

(6) (ξ1, ξ2) 7→
∫

Σ

u∗ωP (X)(ξ1, ξ2)ωΣ.

Let G(P ) denote the group of gauge transformations of P with limits at infinity, that is,
there exists a gauge transformation limi g ∈ G(Pi) with

lim
i
g(θi) = lim

ri→∞
g(θi, ri).

G(P ) naturally acts on H(P,X) preserving the two-form (6). For any ξ ∈ g(P ) we
denote by

ξX ∈ Ω0(Σ, P (Vect(X)))

the P (Vect(X))-valued function generated by the action. The generating vector field for
the action of ξ is given by

u∗ξX ∈ Ω0(Σ, T vertP (X)), (u∗ξX)(z) = ξX(z)(u(z)).



8 E. GONZALEZ, A. OTT, C. WOODWARD, AND F. ZILTENER

Let ∂P denote the bundle at infinity

∂P =
n⋃
i=1

Pi.

The action of G(P ) on H(P,X) is formally Hamiltonian with moment map given by

H(P,X)→ Ω2(Σ, P (g))⊕A(∂P ), (A, u) 7→ (FA + ωΣu
∗P (Φ), A|∂P ).

(Note that the moment map equation makes sense for affine target.) These formal
considerations motivate the following definition. Let µ ∈ An be a n-tuple of elements of
the Weyl alcove, parametrizing a gauge orbit in A(∂P ). Let G(P, µ) denote the subgroup
of G(P ) fixing the connections µidθi at infinity.

Definition 2.3.1. A symplectic vortex with fixed holonomy is a pair (A, u) ∈ H(P,X, µ)
with FA + ωΣu

∗P (Φ) = 0. An isomorphism of vortices (Aj, uj), j = 0, 1 is a gauge
transformation g ∈ G(P, µ) with g(A0, u1) = (A1, u1). Denote by A0(P,X, µ) the set of
symplectic vortices with fixed holonomies µ. A vortex is stable if it has finite automor-
phism group. Let M(P,X, µ) denote the moduli space of isomorphism classes vortices
with fixed holonomy,

M(P,X, µ) := A0(P,X, µ)//G(P, µ)(7)

and M(Σ, X, µ) the union over topological types of bundles P → Σ.

In order to define evaluation maps, it is necessary to introduce framed symplectic
vortices.

Definition 2.3.2. A framing of P at infinity at the i-th end is a trivialization φi : P i →
G. A framed vortex is a vortex (A, u) with holonomies at infinite µ = (µ1, . . . , µn) is a
vortex (A, u) equipped with framings at infinity for each cylindrical end such that

φi : P
Holi(A)

i → Gµi .

An isomorphism of framed vortices is an isomorphism of vortices intertwining the fram-
ings.

Let M fr(Σ, X, µ) denote the space of framed vortices with fixed holonomy at infinity
resp. moduli space of isomorphism classes of framed vortices with fixed holonomy. The
evaluation maps at infinity

[A, u] 7→ (u(zi))

are gauge-invariant and descend to maps

evfr : M fr(Σ, X, µ)→ Xn.

We will see later that the finite energy condition forces the evaluation map ev to take
values in the fixed point set of the limit of the connection. That is, if limiA = µidθi
then

evfr
i (A, u) ∈ Xµi , i = 1, . . . , n.
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Consider the map

π : M fr(Σ, X, µ)→M(Σ, X, µ)

given by forgetting the framings. Suppose that every vortex is stable with trivial stabi-
lizer, and suppose that there exists a classifying map

ψ : M fr(Σ, X, µ)→ EGµ :=
n∏
i=1

EGµ1 × . . .× EGµn

for the bundle π. Combining the classifying map with the evaluation maps above gives
a map

ev : M(Σ, X, µ)→ X
n,µ

Gµ
:=

n∏
i=1

Xµi ×Gµi EGµi .

More generally, the evaluation map exists rationally on the stable locus, assuming the
existence of a classifying map. That is, we have a map

ev∗Q :
n⊗
i=1

HGµi
(Xµi ,Q)→ H(M(Σ, X, µ),Q).

2.4. Correspondence with parabolic vortices. In this section we describe the holo-
morphic objects corresponding to vortices. Suppose that X is a GC-variety, and Σ is a
compact Riemann surface. Recall that a morphism from Σ to the quotient stack X/GC
consists of a pair (EC, u) of a holomorphic principal GC-bundle EC → Σ together with a
holomorphic section u : Σ→ EC(X).

Suppose now that Σ has cylindrical ends. Let Σ denote the associated closed surface,
obtained by adding points at infinity z1, . . . , zn.

Definition 2.4.1. A parabolic holomorphic map from Σ to X/GC consists of a para-
bolic bundle EC → Σ (see Section 2.1) with markings at z1, . . . , zN together with a
holomorphic section u : Σ→ EC(X).

Theorem 2.4.2. There exists a one-to-one correspondence between pseudoholomorphic
gauged maps (E,A, u) with holonomies µj and limits along the j-th cylindrical end in
X
µj
k and parabolic holomorphic maps (EC, u) with u(zj) in PµjX

µj
k .

Proof. Given a connection on a principal G-bundle E → Σ with fixed holonomies
µ1, . . . , µn around the ends, one obtains a parabolic GC bundle EC → Σ by assign-
ing to each fiber (EC)zi at infinity the parabolic reduction determined by µi, see e.g.
[11], by gluing in trivial bundles using the twistings (2). By removal of singularities, a
holomorphic section u : Σ → EC(X) of finite energy extends automatically to a section
u : Σ → EC(X). The value of u at the points z1, . . . , zn is described as follows. Let
B ⊂ GC denote the Borel subgroup whose Lie algebra contains the positive root spaces.
Let Pµj be the parabolic determined by µj,

Pµj = {g ∈ GC| lim
t→∞

Ad(exp(tµj))g ∈ B}



10 E. GONZALEZ, A. OTT, C. WOODWARD, AND F. ZILTENER

whose Lie algebra is that of B plus the sum of negative root spaces vanishing on µj.
The map x 7→ exp(tµj)x restricts on each Pµj -orbit on X to a retraction of Pµjx to
Pµjx ∩Xµj ; in particular, each Pµj orbit contains an element of Xµj . We write Xµj in
terms of components.

Xµj =
⋃
k

X
µj
k , X =

⋃
k

PµjX
µj
k

where X
µj
k are the connected components of Xµj . In the trivializations at the punctures,

the section u is given by

exp(N ln(z)µj/2πi)u(z), z 6= 0.

Thus u(0) lies in X
µj
k if and only if u(0) takes values in PµjX

µj
k , that is, the limit of u(0)

under the flow defined by µj is u(0). This shows �

Recall that S-equivalence is the equivalence relation defined by orbit-closure. Let X
be a projectively embedded GC-variety. The Fubini-Study form on X makes X into a
Hamiltonian G-manifold.

Definition 2.4.3. A holomorphic map u : Σ → X/GC is polystable if it is complex
gauge equivalent to vortex, stable if it is complex gauge equivalent to a stable vortex,
and semistable if it is S-equivalent to a stable vortex.

The definition of semistability depends on the choice of volume form ωΣ. In particular,
if we choose ωΣ identically zero, then the stable parabolic holomorphic maps are those
whose underlying parabolic bundles are parabolic semistable, by the Mehta-Seshadri
theorem [8]. The following is now essentially tautological:

Proposition 2.4.4. There exists a one-to-one correspondence between equivalence classes
of polystable parabolic holomorphic maps Σ→ X/GC and symplectic vortices from Σ to
X.

It would be interesting to investigate the Hilbert-Mumford criterion for stability more
generally in this context. Mundet [?] has described the answer in the case without
markings.

3. Bi-invariant symplectic action

In this section we introduce and study the bi-invariant symplectic action, which is a
generalization of the invariant symplectic action introduced by Gaio-Salamon [4], and
further studied in Ziltener [?]. The bi-invariant action of a triple (x, a, a0) measures
the equivariant symplectic area needed to “fill in” a gauged loop (x, a) with a cylinder
whose asymptotic limit is a covariant constant loop with respect to the connection a0.
The results will be used for two types of “bubbles connect” results: namely, for sphere
bubbles and bubbles on the cylindrical ends.
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Let (X,ω) be a symplectic manifold, G be a compact connected Lie group acting
on X in a Hamiltonian way, with equivariant moment map Φ : X → g∗, 〈·, ·〉X be a
G-invariant Riemannian metric on X, and π : Q → S1'R/Z be a (necessarily trivial)
principal G-bundle. Consider a pair (x, a0), where x : S1 → Q(X) := (Q × X)/G is a
smooth section and a0 ∈ A(Q) is a connection one-form. We denote by

`(x, a0) :=

∫
S1

|da0x| dt

its (twisted) length w.r.t.the metric 〈·, ·〉X .

Definition 3.0.5. An a0-compatible extension of x is a smooth section u : [0, 1]× S1 →
[0, 1]×Q(X) such that

(8) u(1, ·) = x, da0(u(0, ·)) = 0.

We denote by Exta0(x) the set of such extensions and call (x, a0) admissible iff there
exists u ∈ Exta0(x) such that the following holds. If û ∈ Exta0(x) is another extension
satisfying

(9) max
s∈[0,1]

`
(
û(s, ·), a0

)
≤ max

s∈[0,1]
`
(
u(s, ·), a0

)
then

(10)

∫
[0,1]×S1

ω
(
∂sû, da0(û(s, ·)) ·

)
∧ ds =

∫
[0,1]×S1

ω
(
∂su, da0(u(s, ·)) ·

)
∧ ds.

Definition 3.0.6. The bi-invariant symplectic action is the map

A :
{

(x, a, a0)
∣∣ (x, a0) admissible, a ∈ A(Q)

}
→ R

defined by

(11) A(x, a, a0) :=

∫
[0,1]×S1

ω
(
∂su, da0(u(s, ·)) ·

)
∧ ds+

∫
S1

〈
Q(Φ) ◦ x, a− a0

〉
,

where u is as in the definition of admissibility, and we view a− a0 as a one-form on S1

with values in the adjoint bundle Q(g).

Remark 3.0.7. Sections x : S1 → Q(X) and u : [0, 1] × S1 → Q(X) of the bundles are
in natural bijection with equivariant maps Q→ X and [0, 1]×Q→ X respectively. We
will sometimes use this identification.

Remark 3.0.8. The following gives a more intrinsic but less explicit definition of the
action. Let A ∈ A([0, 1] × Q) be a connection one-form on the bundle [0, 1] × Q. The
form

ω̃A = π∗3ω + d
〈
π∗3Φ, π∗2A

〉
∈ Ω2([0, 1]×Q×X)

where π2, π3 are the projections on Q,X, descends to a form ωA ∈ Ω2([0, 1]×Q(X)).

Now let A ∈ A([0, 1] × Q) be a connection one-form with A|s=0 = a0 and A|s=1 = a,
and let A0 denote the pull-back of a0 to [0, 1] × Q under projection onto the second
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factor. Let (x, a0) be an admissible pair and u ∈ Exta0(x) be an extension as in the
definition of admissibility. We have

A(x, a, a0) =

∫
[0,1]×S1

u∗
(
ωA0 + d

〈
([0, 1]×Q)(Φ), A− A0

〉)
=

∫
[0,1]×S1

u∗ωA.

The following lemma proves in particular that the bi-invariant symplectic action is
bi-invariant under gauge transformation. We prove a stronger statement which includes
bundle morphisms not necessarily covering the identity. We view such a morphism as
a section ψ : S1 → Q(Q) = (Q × Q)/G. If x : S1 → Q(X) is a section we define the

pull-back section ψ∗x : S1 → Q(X) by ψ∗x(t) :=
[
q, x̃ ◦ ψ̃(q)

]
, for every t ∈ S1, where

q ∈ Q is an arbitrary point over t. Here x̃ : Q→ X and ψ̃ : Q→ Q are the equivariant
maps corresponding to x and ψ.

Lemma 3.0.9. Let X,ω,G,Q and 〈·, ·〉X be as above and Ψ : [0, 1] × Q → Q a
smooth equivariant map such that for every s ∈ [0, 1] the following holds. The map
fs : S1'R/Z → S1 defined by the equation fs ◦ π = π ◦ Ψ(s, ·) satisfies d

dt
fs(t) ≥ 0,

for every t ∈ S1, or d
dt
fs(t) ≤ 0, for every t ∈ S1. Then for every smooth section

x : S1 → Q(X) and every a0 ∈ A(Q), the pair
(
x ◦ Ψ(1, ·),Ψ(0, ·)∗a0

)
is admissible if

and only if (x, a0) is, and

A
(
Ψ(1, ·)∗x,Ψ(0, ·)∗a0,Ψ(1, ·)∗a

)
= deg(f0)A(x, a, a0).

Proof of Lemma 3.0.9. We denote d := deg(f).

. . .

It suffices to construct maps

Exta0(x)→ Ext(φ∗(x, a0)), Ext(φ∗(x, a0))→ Ext(x, a0)

preserving the quantities in (10), (9). We choose smooth functions ψ, χ : [0, 1] → [0, 1]
satisfying

(12) ψ(0) = 0, ψ(s) = 1, ∀s ∈ [1/2, 1], χ(s) = 0, ∀s ∈ [0, 1/2], χ(1) = 1.

Given an extension u′ of φ∗x we define

(13) u(s, t) :=

{
(ζ∗ψ(s)x)(t) if 0 ≤ s ≤ 1

2
,

((χ× 1)∗u′)(s, t) if 1
2
≤ s ≤ 1.

That is, on the first region u is equal to the section given by pull-back of x by the
map (s, q) 7→ ζψ(s)(q) and on the second region u is the pull-back of u′ by the map
(s, q) 7→ (χ(s), q). The section u is smooth since u′(0, ·) = φ∗x = ζ∗1x. If A′ is an
extension of a′ = φ∗a with limit a0 as in Remark 3.0.8, define ρ(s, q) = ζψ(s)(q) and

(14) A(s, t) :=

{
(ρ∗a0)(t) if 0 ≤ s ≤ 1

2
,

((χ× 1)∗A′)(s, t) if 1
2
≤ s ≤ 1.
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We have

(15) max
s
`(u(s, ·), a0) ≤ max

s
`
(
u′(s, ·), a0

)
since d

dt
π(ζ(s, t)) ≥ 0. On the other hand,∫

Σ

u∗ωA =

∫
[0,1/2]×S1

(ρ∗x)∗ωρ∗A +

∫
[1/2,1]×S1

(χ× 1)∗ωA′ .

To see that the first integral vanishes, note that (ρ∗x)ωρ∗A = ζ∗x∗ωa0 where ζ(s, t) =
π(ρ(s, π−1(t))) is the map covered by ρ. Since ωA0 is degree two, x∗ωa0 = 0. To see that
the second integral vanishes, consider the map η(λ, s, t) = ((1−λ)s+χ(s), t). By Stokes’
theorem

0 =

∫
[0,1]×Σ

(η∗u′)∗dωη∗A

=

∫
({0,1}×Σ)∪([0,1]×∂Σ)

(η∗u′)∗ωη∗A

=

∫
Σ

(u′)∗ωA′ −
∫

Σ

u∗ωA(16)

where to obtain the third equality we have used that η([0, 1] × ∂Σ) ⊆ ∂Σ and so the
pull-back of (ρ∗u′)ωρ∗A to [0, 1]× ∂Σ vanishes. Hence∫

Σ

u∗ωA =

∫
[0,1]×S1

(u′)∗ωA′ .

Conversely, given an extension u ∈ Ext(x, a0) define

(17) u′(s, t) :=

{
(ζ∗ψ(1−s)x)(t) if 0 ≤ s ≤ 1

2
,

((χ× 1)∗u)(s, t) if 1
2
≤ s ≤ 1

and with ρ(s, q) = ζψ(1−s)(q)

(18) A′(s, t) :=

{
(ρ∗a0)(t) if 0 ≤ s ≤ 1

2
,

((χ× 1)∗A)(s, t) if 1
2
≤ s ≤ 1.

Similar arguments to those before show that the maximal length of u′ and the integral
of (u′)∗ωA′ are the same as those for A, u. This proves Lemma 3.0.9. �

Proposition 3.0.10 (Equivariant isoperimetric inequality). Let X,ω,G, 〈·, ·〉g and Φ, 〈·, ·〉X
be as above, and let C ⊆ G be a conjugacy class. Assume that X is closed. Then there ex-
ist constants δ, C > 0 such that for every principal G-bundle Q over S1, every connection
a0 ∈ A(Q) with holonomy in C and every section x : S1 → (Q×X)/G satisfying

(19) `(x, a0) ≤ δ

the following holds. The pair (x, a0) is admissible and for every connection a ∈ A(Q)
and every ε > 0 and 1 ≤ p ≤ ∞ the following inequality holds:

(20) |A(x, a, a0)| ≤ C‖dax‖2
p +

(
1

4ε
+ C

)
‖a− a0‖2

p + ε‖x∗Q(Φ)‖2
p
p−1
.
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Proposition 3.0.11 (Energy action identity). Let X,ω,G, 〈·, ·〉g and Φ be as above, J
be a G-invariant ω-compatible almost complex structure, and let C ⊆ G be a conjugacy
class. Assume that X is closed. Then there exists a constant δ > 0 such that the following
holds. Let s− ≤ s+ be numbers, Q be a principal G-bundle over S1, a0 be a connection
on Q with holonomy in C, ωΣ be an area form on Σ := [s−, s+] × S1, and (u,A) be a
solution of the vortex equations (??) on [s−, s+]×Q. Assume that

(21) `gω,J
(
u(s, ·), a0

)
≤ δ, ∀s ∈ [s−, s+].

Then the pairs
(
u(s±, ·), a0

)
are admissible and

(22) E(u,A) = −A
(
(u,A)(s+, ·), a0

)
+A

(
(u,A)(s−, ·), a0

)
.

To prove Propositions 3.0.10 and 3.0.11, we use the symplectic action for paths with
Lagrangian boundary conditions. More precisely, let (X,ω) be a symplectic manifold,
L0, L1 ⊆ X be Lagrangian submanifolds and let 〈·, ·〉X be a Riemannian metric on X.
Let x : [0, 1] → X be a smooth path such that x(i) ∈ Li, for i = 0, 1. We denote by

`(x) :=
∫ 1

0
|ẋ| dt its length w.r.t.〈·, ·〉X .

Definition 3.0.12. An (L0, L1)-compatible extension of x is a smooth map u : Σ :=
[0, 1]× [0, 1]→ X such that

(23) u(0, t) ∈ L0 ∩ L1, ∀t, u(1, ·) = x, u(s, i) ∈ Li,∀s ∈ [0, 1], i = 0, 1.

We denote by ExtL0,L1(x) the set of all such extensions, and we call the path x admissible
iff there exists u ∈ ExtL0,L1(x) such that the following holds. If û ∈ ExtL0,L1(x) is another
extension satisfying

(24) max
s
`
(
û(s, ·)

)
≤ max

s
`
(
u(s, ·)

)
, ∀s ∈ [0, 1],

then

(25)

∫
Σ

û∗ω =

∫
Σ

u∗ω.

We define the relative action to be the map

AL0,L1 :
{
x ∈ C∞([0, 1], X)

∣∣x admissible
}
→ R,

AL0,L1(x) := −
∫

Σ

u∗ω,

where u : Σ → X is a smooth map with the above properties. Admissibility and the
relative symplectic action are invariant under changes of coordinates. This is the content
of the following.

Lemma 3.0.13. Let X,ω, L0, L1 and 〈·, ·〉X be as above, x : [0, 1] → X a path, and
φ : [0, 1]→ [0, 1] be a smooth map fixing 0 and 1 such that φ′(t) ≥ 0, for every t ∈ [0, 1].
Then x ◦ φ is admissible if and only if x is, and

AL0,L1(x ◦ φ) = AL0,L1(x)
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Proof of Lemma 3.0.13. The proof is similar to that of Lemma 3.0.9. It suffices to con-
struct maps

ExtL0,L1(x)→ ExtL0,L1(x ◦ φ), ExtL0,L1(x ◦ φ)→ ExtL0,L1(x)

preserving the symplectic area and maximal length in (25), (24). Let ψ, χ be as in (12).
Given an extension u′ ∈ ExtL0,L1(x ◦ φ), define u ∈ ExtL0,L1(x) by

u(s, t) :=

{
x((1− ψ(s))t+ ψ(s)φ(t)) if 0 ≤ s ≤ 1

2
,

u(χ(s), t) if 1
2
≤ s ≤ 1.

.

One sees easily that u has the same area and maximal length as u′, The reverse con-
struction is similar.

�

Remark 3.0.14. Their are alternative ways of defining admissibility and the relative
symplectic action, for example, one could define it as follows. If x, y ∈ X are points, we
denote their distance by d(x, y), if x : [0, 1]→ X is a path, we denote its length by `(x),
and if S ⊆ X is a subset, we denote its diameter by

diam(S) := sup
x,y∈S

d(x, y).

(All these quantities are with respect to 〈·, ·〉X .) We denote by Σ := [0, 1] × [0, 1] the
unit square. We call a path x ∈ W 1,∞([0, 1], X) admissible iff x(i) ∈ Li, for i = 0, 1, and
there exists a map u ∈ W 1,∞(Σ, X) such that

(26) u(0, t) = u(0, 0), ∀t, u(1, ·) = x, u(s, i) ∈ Li,∀s ∈ [0, 1], i = 0, 1

and the following holds. If û ∈ W 1,∞(Σ, X) is another map satisfying (26) and the
condition diam(û(Σ)) ≤ diam(u(Σ)) then∫

Σ

û∗ω =

∫
Σ

u∗ω.

Proposition 3.0.15 (Relative isoperimetric inequality). Let X,ω, L0, L1 and 〈·, ·〉X be
as above. Assume that L0 and L1 are closed and intersect cleanly. Then there exist
constants δ, C > 0 such that the following holds. If x : [0, 1] → X is a path satisfying
x(i) ∈ Li, for i = 0, 1 and `(x) < δ then x is admissible and

(27) |AL0,L1(x)| ≤ C‖ẋ‖2
2.

Proof of Proposition 3.0.15. This follows from [10, Lemma 3.4.5] ............ �

Proposition 3.0.16 (Relative area action identity). Let X,ω, L0 and L1 be as in Propo-
sition 3.0.15, and let J be an ω-compatible almost complex structure on X. Then
there exists δ > 0 such that for every pair s− ≤ s+ and every smooth map u : Σ :=
[s−, s+]×[0, 1]→ X the following holds. If u(s, i) ∈ Li, for i = 0, 1, and `gω,J (u(s, ·)) < δ,
for every s ∈ [s−, s+], then u(s−, ·) and u(s+, ·) are admissible, and

(28)

∫
Σ

u∗ω = −AL0,L1(u(s+, ·)) +AL0,L1(u(s−, ·)).
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Proof of Proposition 3.0.16. We set Y± := L± and denote by i± : L± → X the inclusions.
Since L± is Lagrangian the hypotheses of Lemma 5.3.4 below are satisfied. So let U
and α be as in the conclusion of that lemma. As in the proof of Lemma 5.3.4 there
exists an open neighborhood V ⊆ U of L− ∩ L+ and a strong deformation retraction
r : [0, 1]× V → L− ∩ L+ preserving L− ∩ V and L+ ∩ V . Since X,L+, L− are compact,
there exists a constant δ > 0 such that if x ∈ X then

(29) max(dist(x, L+), dist(x, L−)) < δ =⇒ x ∈ V.
Let s−, s+ and u be as in the hypothesis. We define the map

h : [0, 1]× [s−, s+]× [0, 1]→ X, h(λ, s, t) := r(λ, u(s, t)).

We fix s0 ∈ [s−, s+]. The conditions (8) are satisfied with x and u replaced by u(s0, ·)
and h(·, s0, ·). Hence h(·, s0, ·) ∈ ExtL0,L1(u(s0, ·)). Let û ∈ ExtL0,L1(u(s0, ·)) be another
extension. By the assertion of Lemma 5.3.4 we have dα = ω on V and i±|∗V ∩L±α = 0.
Hence by Stokes’ theorem,∫

[0,1]×[0,1]

û∗ω =

∫
∂
(

[0,1]×[0,1]
) û∗α

=

∫
[0,1]

û(1, ·)∗α

=

∫
∂
(

[0,1]×[0,1]
) h(·, s0, ·)∗α

=

∫
[0,1]×[0,1]

h(·, s0, ·)∗ω.

Here in the second equality we used i±|∗V ∩L±α = 0 and the first and the third conditions
in (8) for û, in the third step we used the second condition in (8) for û and h(·, s0, ·). It
follows that u(s0, ·) is admissible. To see that (28) holds, we use again Stokes’ theorem,
to get

0 =

∫
[0,1]×[s−,s+]×[0,1]

h∗dω

=

∫
[s−,s+]×[0,1]

h(1, ·, ·)∗ω −
∫

[0,1]×[0,1]

h(·, s+, ·)∗ω +

∫
[0,1]×[0,1]

h(·, s−, ·)∗ω

=

∫
Σ

u∗ω +AL0,L1(u(s+, ·))−AL0,L1(u(s−, ·)).

Here in the second equality we used the Lagrangian boundary conditions u(s, i) ∈ Li,
for i = 0, 1 and s ∈ [s−, s+], and the fact that r preserves Li. This proves Proposition
3.0.16. �

Lemma 3.0.17. Let X be a manifold and φ : X → X be a diffeomorphism such that X
admits a φ-invariant metric. Let Y :=

{
(x, x)

∣∣x ∈ X} ⊂ X2 denote the diagonal and

Z :=
{

(x, φ(x))
∣∣x ∈ X} ⊂ X2 the graph of φ. Then the intersection Y ∩ Z is clean.
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Proof. The tangent spaces to Y, Z are

TY = {((x, v), (x, v)), x ∈ X, v ∈ TxX}
TZ = {((x, v), (φ(x), Dxφ(v))), x ∈ X, v ∈ TxX}.

Hence
Y ∩ Z = {(x, x) ∈ X2, φ(x) = x}

TY ∩ TZ = {((x, v), (x, v)) ∈ TX2, (φ(x), Dxφ(v)) = (x, v)}.
Projection onto the first factor gives identifications

Y ∩ Z → Xφ, TY ∩ TZ → (TX)Dφ

where Xφ resp. (TX)φ denotes the fixed point set of the action of φ on X resp. TX.
Thus the intersection is clean if and only if Xφ is a submanifold and

(30) T (Xφ) = (TX)Dφ.

Let x ∈ Y ∩ Z. Let g be a φ-invariant metric on X and denote by expx : TxX → X the
exponential map. It follows from the uniqueness of geodesics with given initial conditions
that

(31) expx ◦Dxφ = φ ◦ expx .

We choose a number r > 0 such that expx : Br → X is a diffeomorphism onto its image,
where Br ⊂ TxX denotes the ball of radius r around 0 w.r.t. the metric on TxX. By
equation (31) the fixed point set Br ∩TxXDxφ is mapped bijectively onto the fixed point
set exp(Br) ∩ Xφ. Because TxX

Dxφ is a subspace, Xφ is a manifold near x. Taking
tangent spaces we obtain

Tx(X
φ) = D expx(0)T0(TxX)Dxφ = (TxX)Dxφ.

Hence (30) which proves the Lemma. �

We now relate the bi-invariant and relative symplectic actions and the Yang-Mills-
Higgs and Dirichlet energy. Let C ⊆ G be a conjugacy class. We choose a representative
g ∈ C. Consider the manifold X̃ := X ×X with the symplectic structure ω̃ := (−ω)⊕ω
and the Riemannian metric 〈·, ·〉X̃ induced by 〈·, ·〉X , and the Lagrangian submanifolds

L0 :=
{

(x, x) |x ∈ X
}
, L1 :=

{
(x, g−1x)

∣∣x ∈ X, g ∈ G}.
Let a0 ∈ A(Q) be a connection with holonomy in C and x : S1 → Q(X) be a section
satisfying `(x, a0) ≤ δ. We define ρ : [0, 1] → S1'R/Z by ρ(t) := t + Z. Since a0 has
holonomy conjugate to g, there exists a map f : [0, 1]→ Q satisfying the conditions

(32) π ◦ f = ρ, a0(∂tf) = 0, f(1) = f(0)g.

Viewing x as an equivariant map from Q to X, we define

(33) x̃ : [0, 1]→ X̃, x̃(t) :=
(
x ◦ f((1− t)/2), x ◦ f((1 + t)/2)

)
.

Then, denoting by ˜̀(x̃) the length of x̃ w.r.t.〈·, ·〉X̃ , we have

x̃(i) ∈ Li, for i = 0, 1, ˜̀(x̃) = `(x, a0).
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Furthermore, by Lemma 3.0.17 with φ(x) := gx, the Lagrangians L0 and L1 intersect
cleanly.

Lemma 3.0.18. Let L0, L1, x, x̃, a0 be as above. The path x̃ is admissible if and only if
(x, a0) is, and

A(x, a, a0) = AL0,L1(x̃) +

∫
S1

〈
x∗Q(Φ), a− a0

〉
.

Proof. Let φ : [0, 1]→ [0, 1] be a smooth map with

(34)
d

dt
φ(t) ≥ 0,∀t ∈ [0, 1], φ(t) = 0, t ≤ 1/4, φ(t) = 1, t ≥ 3/4.

By Lemma 3.0.13, x is admissible if and only if x ◦ φ is, and the two paths have the
same action. Similarly, let ψ : S1 → S1 denote the corresponding smooth map, obtained
from the identification S1 = [0, 1]/(0 ∼ 1). Let ρ : Q → Q be a lift of ψ preserving a0;
given a single value ρ(0), the remaining values ρ(t) are defined by parallel transport of
ρ(0) = ρ(ψ(0)) along a path from 0 to ψ(t). By Lemma 3.0.9, ρ∗x is admissible if and
only if x is, and A(ρ∗x, a, a0) = A(x, a, a0).

This reduces to the case that x̃ is constant on [0, 1/4] ∪ [3/4, 1], and x is covariant
constant on [−1/4, 1/4] ∈ S1. We claim that x̃ is admissible if and only if x is. To prove
this, it suffices to define maps

Exta0(x)→ ExtL0,L1(x̃), ExtL0,L1(x̃)→ Exta0(x)

preserving the maximal length and integrals in the definitions of admissibility, where
Exta0(x) resp. ExtL0,L1(x̃) is the set of extensio of x resp. x̃, compatible with a0 and
(L0, L1) respectively. Given any extension u ∈ Exta0(x) define ũ ∈ ExtL0,L1(x̃) by
pullback under f , with the same maximal length and integral. Conversely, given any
extension ũ ∈ ExtL0,L1(x̃) define an extension ũ1 of x̃ by pull-back under the map 1× φ,
where φ is the map of (34). Since ũ1 is constant near 0, 1, it descends to a smooth map

u1 : [0, 1]× S1 → Q, u1(1, ·) = x, `(u1(s, ·), a0) = `(ũ(s, ·)).
One sees easily that u1 has the same maximal length and

A(x, a, a0) =

∫
[0,1]×S1

u∗1ωA0 =

∫
[0,1]×[0,1]

ũ∗ω.

Hence x is admissible if and only if x̃ is and

A(x, a, a0) = A(x, a, a0) +

∫
S1

〈
x∗Q(Φ), a− a0

〉
= AL0,L1(x̃) +

∫
S1

〈
x∗Q(Φ), a− a0

〉
which proves Lemma 3.0.18. �

Proof of Proposition 3.0.10. Let X̃, ω̃, L0, L1, 〈·, ·〉X̃ and ˜̀ be as above. We choose con-

stants δ > 0 and C1 := C as in Lemma ??, with X,ω, 〈·, ·〉X and ` replaced by X̃, ω̃, 〈·, ·〉X̃
and ˜̀. We define

C2 := max
{
|ξX(x)|

∣∣x ∈ X, ξ ∈ g : |ξ| = 1
}
, C := max

{
2C1, 2C

2
2

}
.
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Let x, a, a0 be as in the Proposition, f : [0, 1] → Q be a map satisfying (32) and
x̃ : [0, 1] → X be the path defined by (33). By the statement of Lemma ?? the path x̃
is admissible. Hence by Lemma 3.0.18 the pair (x, a0) is admissible. Furthermore, for
every ε > 0, ∣∣A(x, a, a0)

∣∣ ≤ ∣∣AL0,L1(x̃)
∣∣+

∫
S1

∣∣〈Q(Φ) ◦ x, a− a0

〉∣∣
≤ C1`(x̃)2 + ‖Q(Φ) ◦ x‖2‖a− a0‖2

≤ C1‖da0x‖2
2 + ε‖Q(Φ) ◦ x‖2

2 +
1

4ε
‖a− a0‖2

2.(35)

Here in the first inequality we used Lemma 3.0.18, in the second inequality we used ??
and Hölder’s estimate, and in the last inequality we used that `(x̃) = ‖da0x‖1 ≤ ‖da0x‖2.
Furthermore,

(36) |da0x|2 =
∣∣dax+ (a− a0)X(x)

∣∣2 ≤ 2|dax|2 + 2|(a− a0)X(x)|2.

Since |(a− a0)X(x)| ≤ C2|a− a0|, combining (35) with (36) implies∣∣A(x, a, a0)
∣∣ ≤ C‖da0x‖2

2 +

(
C +

1

4ε

)
‖a− a0‖2

2 + ε‖Q(Φ) ◦ x‖2
2.

This proves Proposition ??. �

Proof of Proposition 3.0.11. Let X,ω,G, 〈·, ·〉g,Φ, J, C be as in the hypothesis of the

proposition. We define 〈·, ·〉X := gω,J and X̃, ω̃, L0, L1, 〈·, ·〉X̃ , ρ, f and ˜̀be as on page 17.
Then L0 and L1 are closed and intersect cleanly. Hence the hypotheses of Proposition
3.0.16 are satisfied, with X,ω and J replaced by X̃, ω̃ and J̃ := (−J)⊕ J : TX̃ → TX̃.
We choose a number δ > 0 satisfying the conclusion of this proposition. Let s− ≤ s+

and u be as in the proposition. We denote by u′ the equivariant map from [0, 1]×Q to
X corresponding to u, and we define

ũ : Σ := [2s−, 2s+]× [0, 1]→ X̃, ũ(s, t) :=
(
u′(s/2, f((1− t)/2), u′(s/2, f((1 + t)/2)

)
.

It follows that ũ(s, i) ∈ Li, for i = 0, 1, s ∈ [s−, s+]. Using the second equality in (32),
we get

˜̀(ũ(s, ·)) = `
(
u(s, ·), a0

)
< δ, ∀s ∈ [s−, s+].

Hence by the assertion of Proposition 3.0.16, the paths ũ(s−, ·) and ũ(s+, ·) are admissi-
ble, and

(37)

∫
Σ

ũ∗ω̃ = −AL0,L1(ũ(s+, ·)) +AL0,L1(ũ(s−, ·)).

On the other hand,

ω̃(∂sũ, ∂tũ) =
1

4

(
ω
(
∂su

′(s/2, f((1− t)/2)
)
, d(u′(s/2, ·))ḟ((1− t)/2)

)
+ω
(
∂su

′(s/2, f((1 + t)/2)
)
, d(u′(s/2, ·))ḟ((1 + t)/2)

))
.(38)
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The second equality in (32) implies that d(u′(s/2, ·))df = da0(u′(s/2, ·))dρ. Combining
this with (38), we obtain

(39)

∫
Σ

ũ∗ω̃ =

∫
Σ

ω̃(∂sũ, ∂tũ)ds ∧ dt =

∫
[s−,s+]×S1

ω
(
∂su, da0(u(s, ·)) ·

)
∧ ds.

We denote by a± the pullback of A by the inclusion {s±}×Q→ [s−, s+]×Q. By Lemma
3.0.18 with x and x̃ replaced by u(s±, ·) and ũ(s±, ·), the pair (u(s±, ·), a0) is admissible,
and

A
(
u(s±, ·), a±, a0

)
= AL0,L1(ũ(s±, ·)) +

∫
S1

〈
u(s±, ·)∗Q(Φ), a± − a0

〉
.

Substituting this into (37) and combining with (39), we obtain

−A
(
u(s+, ·), a+, a0

)
+A

(
u(s−, ·), a−, a0

)
=

∫
[s−,s+]×S1

ω
(
∂su, da0(u(s, ·)) ·

)
∧ ds

−
∫
S1

〈
u(s+, ·)∗Q(Φ), a+ − a0

〉
+

∫
S1

〈
u(s−, ·)∗Q(Φ), a− − a0

〉
.(40)

We denote by A0 the pull-back of a0 to [0, 1]×Q under the projection onto the second
factor, and we define ωA ∈ Ω2([0, 1]×Q(X)) as in Remark 3.0.8. Using Stokes’ theorem,
the right hand side of (40) equals∫

[s−,s+]×S1

u∗
(
ωA0 + d

〈
([s−, s+]×Q)(Φ), A− A0

〉
=

∫
[s−,s+]×S1

u∗ωA = E(A, u),

where in the last equality we used Lemma 2.2.6. This proves Proposition 3.0.11. �

4. Energy concentration

In this section we prove various versions of exponential decay used for compactness
in the next section. Namely, for symplectic vortices with sufficiently small energy and
connection sufficiently close to a base connection, we show that the energy is concentrated
on the ends. (This type of result is also known as an annulus lemma, see for example
[7].) We prove the results for unperturbed symplectic vortices only; the perturbed case
can be reduced to this case by the graph construction in [4, Appendix A].

Let (X,ω) be a symplectic manifold, G be a compact connected Lie group acting on
X in a Hamiltonian way, with moment map Φ : X → g∗, 〈·, ·〉g be an invariant inner
product on g, and J be a ω-compatible G-invariant almost complex structure on X. We
denote by ιG the injectivity radius of G and by dG the distance function on G, both
w.r.t. the metric on G induced by 〈·, ·〉g. Furthermore, if C, C ′ ⊆ G are conjugacy classes
then we define

d̄G(C, C ′) := min
{
d(g, g′)

∣∣ g ∈ C, g′ ∈ C ′}
Then d̄ is a distance function that induces the quotient topology on the set of conjugacy
classes, see for example Lemma A.10 in [?].
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Theorem 4.0.19. Assume that X is closed. Then for every conjugacy class C ⊆ G there
exists a constant ε0 > 0 such that for every constant K ∈ R there exists a constant C with
the following property. Let s0, s1 ∈ R be such that s1 ≥ s0 + 2, P → Σ := [s0, s1]× S1 be
a principal G-bundle, λ ∈ C∞

(
[s0, s1]× S1, (0,∞)

)
, p > 2 and (u,A) be a W 1,p-solution

of the vortex equations on P with area form ωΣ := λ2ds ∧ dt. Assume that

λ(s, t) ≤ Ke−ε0 min{s−s0,s1−s},∀s ∈ [s0, s1], t ∈ S1,(41)

∆(λ2) ≥ 0, maxx∈X |Φ(x)|2
(

sup[s0,s1]×S1

9|dλ|2

∆(λ2)
− 1

)
≤ K2,(42)

E(u,A) ≤ ε0,(43)

d̄G(C, Cs) ≤ Ke−4ε0 min{s−s0,s1−s}, ∀s ∈ [s0, s1],(44)

where Cs ⊆ G denotes the conjugacy class of the holonomy of A around the circle {s}×S1.
Then

(45) |dAu|0(s, t) ≤ Ce−ε0 min{s−s0,s1−s}, ∀(s, t) ∈ [s0 + 1, s1 − 1]× S1,

where the norm on the left hand side is induced by the standard metric on Σ and the
metric gω,J on X.

Let X,ω,G, 〈·, ·〉g,Φ and J be as above, Σ be a real surface equipped with two Rie-
mannian metrics 〈·, ·〉Σ and 〈·, ·〉0Σ and a pair (u,A) ∈ Γ(P (X)) × A(P ) we define the
energy density of (u,A) w.r.t.

(
〈·, ·〉Σ, 〈·, ·〉0Σ

)
to be

e
〈·,·〉Σ,〈·,·〉0Σ
(u,A) :=

1

2

(
|dAu|20 + λ2|µ ◦ u|2 + λ−2|FA|20

)
,

where λ : Σ→ (0,∞) is the function defined by the equation 〈·, ·〉Σ = λ2〈·, ·〉0Σ, and the
point-wise norms | · |0 and | · | are taken w.r.t. 〈·, ·〉0Σ and 〈·, ·〉Σ respectively. In the case
Σ ⊆ C or Σ ⊆ R× S1 and 〈·, ·〉0Σ = ds2 + dt2, we abbreviate

eλ(u,A) := e
〈·,·〉Σ,ds2+dt2

(u,A) .

Lemma 4.0.20 (Point-wise bound on energy density). Let X,ω,G, 〈·, ·〉g,Φ and J be as
above. Assume that X is closed. Then there exists a constant ε > 0 with the following
property. Let K ∈ R, r > 0, λ ∈ C∞

(
Br, (0,∞)

)
, P → Br be a principal G-bundle,

p > 2 and (u,A) be a W 1,p-solution the vortex equations on P with area form λ2ds∧ dt.
Assume that the inequalities (42) and

(46) Eλ(A, u) +K2

∫
Br

λ2ds dt ≤ Kε

are satisfied. Then

(47)
(
eλ(A,u) +K2λ2

)
(0) ≤ 8

πr2

(
Eλ(A, u) +K2

∫
Br

λ2ds dt

)
.

Remark 4.0.21. The additional terms K2λ2 and 8
πr2K

2
∫
Br
λ2ds dt in inequality (47) are

needed. They may be viewed as the horizontal contribution to the energy density resp.
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energy of u viewed as a holomorphic map to P (X) equipped with the metric obtained
from the sum of ωA and the pull-back of K2λ2dsdt.

For the proof of Lemma 4.0.20 we need the following result, which is Lemma 4.3.2.
[?].

Lemma 4.0.22 (Mean value inequality). Let r > 0 and C ≥ 0. If f : Br → R is a
C2-function that satisfies the inequalities

f ≥ 0, ∆f ≥ −Cf 2,

∫
Br

f <
π

8C

then

f(0) ≤ 8

πr2

∫
Br

f.

Proof of Lemma 4.0.20. Let X,ω,G, 〈·, ·〉g,Φ and J be as above, and assume that X is
compact. By the calculation in the proof of the pointwise bound on the energy density [?,
Lemma ?] there exists a constant C0 ≥ 0 such that for every r > 0, λ ∈ C∞

(
Br, (0,∞)

)
,

every principal G-bundle P over Br and every λ-vortex (A, u) on P we have

(48) ∆eλ(A,u) ≥
(
− 9|dλ|2 + ∆(λ2)− C0λ

4
)
|µ ◦ u|2 − C0

(
eλ(A,u)

)2
.

Let now K ∈ R.

with K replaced by
K ′ := max

{
K + C0K

2, C0

}
.

Let r > 0, λ ∈ C∞
(
Br, (0,∞)

)
, P → Br be a principal G-bundle, p > 2 and (u,A)

be a W 1,p-solution the vortex equations on P with area form λ2ds ∧ dt. Assume that
the conditions (??,??,46) are satisfied. By elliptic regularity and invariance of energy
density under gauge transformation ?? the density eλ(A,u) is smooth. Furthermore, the

first inequality in (??) holds by the definition of eλ(A,u), and the second inequality with K

replaced by K ′ follows from (48,??,??) and the fact λ2|µ◦u|2 ≤ eλ(A,u). Finally, the third

inequality from (46). Therefore, inequality (47) follows from the statement of 4.0.22.
This proves Lemma 4.0.20. �

Lemma 4.0.23. Let G be a compact Lie group and 〈·, ·〉g be an invariant inner product
on g := Lie(G), Q be a principal G-bundle over S1'R/Z, X be a manifold (possibly with
boundary), a0 ∈ A(Q) and a be a smooth section of the real vector bundle{

(x, q, φ)
∣∣ (x, q) ∈ X ×Q, φ : TqQ→ g equivariant, φ(qξ) = ξ, ∀ξ ∈ g

}
→ X ×Q.

Denoting by C and Cx the conjugacy classes of the holonomy of a0 and a(x, ·) around S1,
we assume that

d̄G(C, Cx) < ιG.

Then there exists an equivariant diffeomorphism g : X ×Q→ Q that induces the canon-
ical projection X × S1 → S1 and satisfies

(49)
∣∣(a(x, ·, ·)d(g(x, ·))− a0

)
(q)
∣∣ = d̄G(C, Cx),
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for every x ∈ X, q ∈ Q.

Remark 4.0.24. Philosophically, in this lemma a is a family of connections on Q and g
is a family of gauge transformations on Q, both depending smoothly on x ∈ X. In the
case in which X is a point the lemma says that given two connections on Q → S1 we
may gauge transform one of them in such a way that it lies at distance from the other
connection given by the distance of the conjugacy classes. For a general manifold X, the
lemma can be seen as a parametrized version of this.

Proof of Lemma 4.0.23.

Claim 4.0.25. There exists smooth map g̃ : X × [0, 1]→ G such that

(50)

Proof of Claim 4.0.25. . . .

This proves Claim 4.0.25. �

. . .

This proves Lemma 4.0.23. �

Proof of Theorem 4.0.19. For ξ ∈ g and x ∈ X we denote by ξX(x) ∈ TxX the infinites-
imal action of ξ at x, and we define

C1 := max
{
|ξX(x)|

∣∣x ∈ X, ξ ∈ g : |ξ| = 1
}
.

Let C ⊆ G be a conjugacy class. We fix constants δ > 0 and C2 := C as in Proposi-
tion 3.0.10. Shrinking δ if necessary, we may assume that it satisfies the condition of
Proposition 3.0.11. We define

(51) ε0 := min

{
1

4C2

, . . .

}
.

Let K ≥ 0. We choose constants C3 := C and Ẽ := E > 0 as in Lemma 4.0.20, with K
replaced by K̃ := min{K,

√
ε}. We define

(52) E := min

{
Ẽ

4
,
δ2

16C3

}
.

Let 0 < c < c0, s0, s1 ∈ R be such that s1 ≥ s0 + 2, P → Σ := [s0, s1] × S1 be a
principal G-bundle, λ ∈ C∞

(
[s0, s1] × S1, (0,∞)

)
, p > 2 and (u,A) be a W 1,p-solution

of the vortex equations on P with area form ωΣ := λ2ds ∧ dt. Assume that conditions
(??,43,??) are satisfied. Let (s, t) ∈ [s0 + 1, s1 − 1] × S1. Consider the map φ : B 1

2
→

[s0, s1]× S1 given by φ(s′, t′) := (s+ s′, t+ t′). We define λ̃ := λ ◦ φ : B1/2 → R. By the
assumptions (??) the conditions (??) and (??) hold with r := 1/2 and λ,K replaced by

λ̃, K̃. Moreover, by (43) and (52) the condition (46) is satisfied with E,P,A, u replaced
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by Ẽ and (P̃ , Ã, ũ) := φ∗(P,A, u). It follows that the inequality (47) holds with C
replaced by C3, and hence

|dAu|(s, t)2 ≤ eλ(u,A)(s, t)

= eλ̃
(Ã,ũ)

(0, 0)

≤ 4C3E
λ̃(Ã, ũ)

≤ 4C3E
λ(A, u).(53)

We define

C4 :=

and the function
[
1, (s1 − s0)/2− 1

]
→ [0,∞) by

(54) f(s) := E
(
u,A,

[
s0 + s, s1 − s

]
× S1

)
+ C4e

−4ε0s.

Claim 4.0.26. We have f ′(s) ≤ −2ε0f(s), for every s ∈
[
1, (s1 − s0)/2− 1

]
.

Proof of Claim 4.0.26. We may assume without loss of generality that there exists a
principal G-bundle Q over S1 such that P = [s0, s1] × Q. We fix a connection a0 on Q
whose holonomy lies in C.

Claim 4.0.27. There exists a gauge transformation g : P → P such that

(55) `
(
gu(s, ·), a0

)
≤ δ,

for every s ∈ [s0, s1].

Proof of Claim 4.0.27. Denoting by Cs the conjugacy class of the holonomy of A|{s}×Q
inequality (44) . . . implies that d̄G(C, Cs) ≤ ιG/2, for every s ∈ [s0, s1]. Hence by Lemma
4.0.23 with X := [s0, s1] and the section a defined by av := A(0, v) for v ∈ TqQ and
q ∈ Q, there exists an equivariant diffeomorphism g : [s0, s1]×Q→ Q such that condition
(49) is satisfied. We define the gauge transformation g̃ : P → P by g̃(s, q) := g(s), for
every s ∈ [s0, s1] and q ∈ Q, and we define (A′, u′) := g̃∗(A, u). We fix s ∈ [s0 +1, s1−1].
We have

`
(
(u′(s, ·), a0

)
≤ `

(
(A′, u′)(s, ·)

)
+

∫
S1

∣∣∣(A′(s, ·)− a0

)
X

(
u′(s, ·)

)∣∣∣(t)dt(56)

≤ `
(
(A, u)(s, ·)

)
+ C1

∫
S1

∣∣A′(s, ·)− a0

∣∣dt.(57)

By inequality (80) we may estimate

`
(
(A, u)(s, ·)

)
≤

∫
S1

|dAu|(s, t)dt

≤
∫
S1

√
eλ(A,u)(s, t)dt

≤ 2
√
C3Eλ(A, u) ≤ δ

2
.(58)
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Here in the third step we used (53). On the other hand, by (49) and assumption (44),
we have

(59)
∣∣A′|{s×Q} − a0

∣∣(t) = d̄G(C, Cs) ≤ Ke−4ε0 min{s−s0,s1−s},

for every t ∈ S1. Substituting this into (57) and combining with (58), we get

`
(
(u′(s, ·), a0

)
≤ δ.

This proves Claim 4.0.27. �

We choose a gauge transformation g : P → P as in Claim 4.0.27 and define (A′, u′) :=
g(A, u). Then by (55) the condition (21) of Proposition 3.0.11 is satisfied with (A, u) re-
placed by (A′, u′). It follows that the pairs

(
u′(s0, ·), a0

)
and

(
u′(s1, ·), a0

)
are admissible,

and equality (22) holds with (A, u) replaced by (A′, u′). We fix now s ∈
[
1, (s1−s0)/2−1

]
.

Using again (55) the condition (19) of Proposition 3.0.10 is satisfied with x := u′(s+s0, ·)
and a := A′|{s+s0}×Q. So applying this proposition with p := 2 and ε replaced by e−4ε0s,
using min{s, s1 − s0 − s} = s, we get

∣∣A((A′, u′)(s+ s0, ·), a0

)∣∣ ≤ C2

∥∥dA′(u
′(s+ s0, ·))

∥∥2

2
+

(
e4ε0s

4
+ C2

)∥∥A′|{s+s0}×Q − a0

∥∥2

2

+e−4ε0s
∥∥u′∗P (Φ)(s+ s0, ·)

∥∥2

2

≤ C2

∫
S1

∣∣dA′(u′(s+ s0, ·))
∣∣2 dt+

(
e4ε0s

4
+ C2

)
K2e−8ε0s

+ max
x∈X
|Φ(x)|2e−4ε0s

≤ C2

(∫
S1

∣∣dA′(u′(s+ s0, ·))
∣∣2 dt+ e−4ε0s

)
.(60)

Here in the second step we used inequality (59). Similarly, we have

(61)
∣∣A((A′, u′)(s1 − s, ·), a0

)∣∣ ≤ C2

(∫
S1

∣∣dA′(u′(s1 − s, ·))
∣∣2 dt+ e−4ε0s

)
.
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It follows that

f ′(s) =
d

ds

(∫
[s0+s,s1−s]

(∫ 1

0

eλA,udt+ C4e
−4ε0s

)
ds

)
= −

∫ 1

0

(
eλA,u(s0 + s, t) + eλA,u(s1 − s, t)

)
dt− 4ε0C4e

−4ε0s

≤ −
∫ 1

0

(∣∣dA′(u′(s+ s0, ·))
∣∣2 +

∣∣dA′(u′(s1 − s, ·))
∣∣2)dt− 4ε0C4e

−4ε0s

≤ −4ε0

(∣∣A((A′, u′)(s+ s0, ·), a0

)∣∣+
∣∣A((A′, u′)(s1 − s, ·), a0

)∣∣)
+2e−4ε0s − 4ε0C4e

−4ε0s

≤ −2ε0

(
E
(
A, u,

[
s+ s0, s1 − s

]
× S1

)
+ C4e

−4ε0s
)

≤ −2ε0f(s).

where in the fourth step we used (60), (61) and 4ε0 ≤ C−1
2 , in the fifth step we used the

energy action identity. This proves Claim 4.0.26. �

Claim 4.0.26 implies that on
[
0, (s1 − s0)/2

]
,

d

ds

(
fe2cs

)
= f ′e2cs + f2ce2cs ≤ 0,

and hence

(62) f(s) ≤ f(0)e−2cs ≤ E(u,A)e−2cs.

Combining this with (??) and (54), we get, for every ŝ ∈
[
s0 + 1, (s0 + s1)/2

]
and t̂ ∈ S1,

|dAu(ŝ, t̂)|2 ≤ 32

π
f(ŝ− s0 − 1/2) ≤ 32ec

π
E(u,A)e−2c(ŝ−s0).

Similarly, we get for every ŝ ∈
[
(s0 + s1)/2, s1 − 1

]
and t̂ ∈ S1,

|dAu(ŝ, t̂)|2 ≤ 32

π
f(s1 − ŝ− 1/2) ≤ 32ec

π
E(u,A)e−2c(s1−ŝ).

Inequality (45) follows from this and (??). This proves Theorem 4.0.19. �

For s ∈ [s0,∞) we denote by is : {s} × S1 → Σ the inclusion.

Proposition 4.0.28. Assume that X is closed. Let ε > 0 and K > 0 be constants. Then
there exists a constant C with the following property. Let s0 ∈ R, P → Σ : [s0,∞)× S1

be a principal G-bundle, λ ∈ C∞
(
[s0,∞) × S1, (0,∞)

)
, p > 2 and (A, u) be a locally

W 1,p-solution of the equation

(63) FA + λ2P (Φ) ◦ u ds ∧ dt = 0.

Assume that

(64) λ(s, t) ≤ Ke−εs, ∀(s, t) ∈ Σ.
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Then there exist a conjugacy class C∞ ⊆ G and a constant C such that, denoting by Cs
the holonomy of i∗sA around S1, we have

(65) d̄G(Cs, C∞) ≤ Ce−2εs, ∀s ∈ [s0,∞).

Proof of Proposition 4.0.28. We may assume without loss of generality that P = [s0,∞)×
Q. Gauge transforming the pair (A, u) we may assume that it is smooth and in temporal
gauge, i.e. As,q

(
∂
∂s

)
= 0, for every s ∈ [s0,∞), q ∈ Q. We fix a smooth connection a0 on

Q, and we define αs := i∗sA− a0. By (63), we have

(66) ds ∧ ∂sαs = FA = −λ2Q(Φ) ◦ u ds ∧ dt.

Let s0 ≤ s ≤ s′. Then for every t ∈ S1, we have

|αs′(t)− αs(t)| =

∫ s′

s1

|∂sαs(t)|ds

≤ 2ε0C1

∫ s′

s

e−2εsds

≤ C1

(
e−2εs − e−2εs′

)
.(67)

where C1 := K2

2ε
maxx∈X |Φ(x)|. Here in the second step we used (66). Hence the sequence

αν , for ν ∈ N, is Cauchy in C(S1). So the same holds for the sequence of connections
a0 + αν . We denote by a∞ its limit. Furthermore, we pick a point q ∈ Q, and denote by
h∞, hs ∈ G the holonomies of a∞ and i∗sA respectively around S1 starting at q. Moreover,
we denote by C∞, Cs ⊆ G the conjugacy classes of h∞ and hs respectively. To see that
inequality (65) holds, we take the limit s′ →∞ in (67), to obtain

(68) max
S1
|i∗sA− a∞| ≤ C1e

−2εs.

Hence i∗sA converges to a∞ in C(S1). Denoting by Cs the conjugacy class of the holonomy
of i∗sA, it follows that

d̄G(Cs, C∞) ≤ dG(h∞, hs) ≤
∫ 1

0

|i∗sA(t)− a∞(t)|dt ≤ C1

2ε
e−2εs.

Here the second inequality follows from a standard argument, involving the derivative
of the map gs : [0, 1] → G defined by qsgs = q∞, where qs, q∞ : [0, 1] → Q are the i∗sA-
and a∞-horizontal lifts of the projection [0, 1] → S1'R/Z starting at q. This proves
Proposition 4.0.28. �

Corollary 4.0.29 (Decay for vortices on semi-infinite cylinders). Assume that X is
closed. Then for every conjugacy class C ⊆ G there exists a constant ε0 > 0 with
the following property. Let s0 ∈ R, P → Σ : [s0,∞) × S1 be a principal G-bundle,
λ ∈ C∞

(
[s0,∞) × S1, (0,∞)

)
, p > 2 and (A, u) be a locally W 1,p-solution of the vortex
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equations on P with area form ωΣ := λ2ds ∧ dt. Assume that

K0 := sup
(s,t)∈Σ

λ(s, t)e2ε0s <∞,(69)

K1 := sup
(s,t)

9|dλ|2

∆(λ2)
<∞,(70)

E(A, u) <∞,(71)

d̄G(Cs, C)→ 0, as s→∞.(72)

Then there exists a constant C such that

(73) |dAu|0(s, t) ≤ Ce−ε0s, ∀s ≥ s0 + 1, t ∈ S1.

Proof of Corollary 4.0.29. Let C ⊆ G be a conjugacy class. We choose a constant ε0
as in Theorem 4.0.19. Let s0 ∈ R, P → Σ : [s0,∞) × S1 be a principal G-bundle,
λ ∈ C∞

(
[s0,∞)× S1, (0,∞)

)
, p > 2 and (A, u) be a locally W 1,p-solution of the vortex

equations on P with area form ωΣ := λ2ds ∧ dt. Assume that conditions (69,70,71,72)
are satisfied. By (71) there exists a number s′0 ≥ s0 such that inequality (43) holds with
s0 replaced by s′0. We may assume without loss of generality that s′0 = 0. We choose a
constant C0 := C as in Proposition 4.0.28, corresponding to ε := 2ε0 and K := K0. We
define

K := max
{
K0,

√
max{K1, 0}max

X
|Φ|, C0

}
.

We fix a constant C as in the assertion of Theorem 4.0.19 corresponding to this K. Let
ŝ ≥ 1, t ∈ S1. We define s1 := 2ŝ. Then conditions (41) and (42) with s0 replaced by 0
hold by assumptions (69) and (70) respectively. Furthermore, (44) with s0 replaced by
0 follows from (65) and (72) (with C replaced by C0). It follows that (45) holds with s0

replaced by 0, and therefore |dAu|0(ŝ, t) ≤ Ce−ε0ŝ. This proves (73) and completes the
proof of Corollary 4.0.29. �

5. Compactness

5.1. Vortices with bounded first derivative. The following extends compactness for
bounded first derivative in Cieliebak-Gaio-Mundet-Salamon [2] to the case with cylin-
drical ends:

Theorem 5.1.1. Let (Aα, uα) be a sequence of vortices with bounded energy E(Aα, uα).
If duα is bounded in C0 on compact sets, then there exists a smooth vortex (A∞, u∞)
such that after gauge transformation and passing to a subsequence (Aα, uα) converges to
(A∞, u∞) uniformly in all derivatives on compact sets.

Proof. Let (Aα, uα) be a sequence as above. The vortex equation and bound on Φ give
a pointwise bound on the curvature,

‖FA‖ < CeκΣrΣ .
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This implies an L2 bound for the curvature, see Proposition ??. Uhlenbeck compactness
implies that there is a subsequence (still denoted) Aα and a sequence of gauge transfor-
mations gα ∈ G(P ) such that gα · Aα converges weakly to a connection A∞ in the local
Sobolev topology Wm,p,loc and strongly in the C0-topology (see Wehrheim [12, Theorem
A’]). By hypothesis the sequence gα ·uα is bounded in Wm,p,loc the theorems Alaoglu and
Rellich, after passing to a subsequence, gα · uα converges weakly in Wm,p,loc and strongly

in C0 to a section u∞. Since FAα converges to FA∞ and ∂JAαuα converges to ∂JA∞u∞
both weakly in W0,p,δ, the pair (A∞, u∞) is a weak solution to the vortex equations in
Wm,p,loc. By Proposition ??, after gauge transformations, we can assume that (Aα, uα)
converges to (A∞, u∞) in Wm,p,δ, and by Proposition ?? we may gauge transform so that
(A∞, u∞) is actually smooth.

To show convergence in all derivatives on compact sets, we use the bootstrapping
method of the proof of ??, as follows. By Coulomb gauge, there is a sequence of gauge
transformations gα ∈ Gm+1,p,loc such that d∗A∞(gαAα −A∞) = 0. The sequence gαAα has
also L2-bounded curvature and thus a subsequence, still denoted by gαAα, converges to
A∞ weakly in Wm,p,loc and strongly in C0. gα is uniformly bounded in Wm+1,p,loc and
converges to an element g ∈ Gm+1,p,loc strongly in Wm,p,loc and weakly in Wm+1,p,loc. By
Proposition ?? a subsequence gα · u∞ converges to g · u∞ strongly in C0 and weakly in
Wm,p,δ, and g ·A∞ = A∞. Using equation (??), one sees that the convergence of Aα gives
the convergence of almost complex structures JAα in Wm,p,loc. In particular, for every
small open set U of compact support, this sequence is bounded uniformly, that is there
is a constant c0 such that, ‖JAα‖ ≤ c0, for all α. Now, by [2, Lemma 3.3] we have a
constant c, depending on c0 and U so that, the sequence uα of JAα-holomorphic sections
is also bounded in Wm+1,p,loc, and by Proposition ?? we can assume it is also bounded
in Wm+1,p,δ. The sequences aα := Aα − A∞, uα are bounded in Wm,p,δ, and they satisfy

d∗A∞(aα) = 0, FA∞ + dA∞aα + [aα, aα] + ωΣ(uα)∗P (Φ) = 0.

Therefore, dA∞(aα) is bounded in Wm,p,δ as well as d∗A∞(aα), elliptic regularity shows that
aα is bounded in Wm+1,p,δ. By passing to a subsequence if necessary, we can now assume
that (Aα, uα) converges in Wm+1,p,δ. Continuing this process we get the convergence on
compact sets in all derivatives up to gauge transformation. �

The case when the sequence duα is not bounded on compact sets in the C0 norm yields
the existence of bubbles. More formally, we introduce the space of stable vortices which
will be the proper compactification for the moduli space of vortices.

5.2. Nodal Vortices. Let Σ be a connected, oriented surface with n cylindrical ends.

Definition 5.2.1. A combinatorial type consists of a rooted tree Γ together with a

(a) partition of the vertices Vert(Γ) = {0}∪Vert(Γ)C ∪Vert(Γ)s where vertex 0 is the
root vertex. The vertices Vert(Γ)C resp Vert(Γ)s are cylindrical resp. spherical;

(b) a labelling of the cylindrical vertices by {1, . . . , n};
(c) a bijection from the set of semiinfinite edges of Γ to {1, . . . , n};
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satisfying the condition that for each i ∈ {1, . . . , n}, the vertices labelled i should form
a linear string connected adjacent to the root vertex to the edge for the i-th marking.

In Figure ??, the root resp. cylindrical resp. spherical vertices are black resp. grey
resp. white. The three seminfinite edges are labeled 1, 2, 3 and the single cylindrical
vertex connects the root vertex with the third semininfinite edge.

The set of spherical vertices Vert(Γ)s admits a partition

Vert(Γ)s = Vert(Γ)Σ,0 ∪ Vert(Γ)Σ,∞

depending on whether they are connected to the root vertex by a path of spherical
vertices or not. We call the second set the spherical vertices at infinity.

Definition 5.2.2. Let Γ be a combinatorial type. A marked nodal curve with cylindrical
ends of combinatorial type Γ with principal component Σ is a nodal curve Σ consisting of
components Σ0, . . . ,Σk and nodes {{w−1 , w+

1 }, . . . , {w−m, w+
m}} such that graph obtained

by replacing components with vertices and nodes/markings with edges is the graph
underlying Γ. A component is a cylindrical resp. spherical if the corresponding vertex is
cylindrical resp. spherical.

Each cylindrical component Σi has two distinguished special points, given by the
connecting points in the chain of cylinders connecting the root vertex with the marking,
and hence a distinguished isomorphism Σi → P1 mapping the two special points to 0,∞.

Figure 1. Example of a nodal curve with cylindrical ends

Definition 5.2.3. Let Γ be a combinatorial type, P → Σ a principal G-bundle, J ∈
J (P,X) and H(P,X) compatible almost complex structures and Hamiltonian perturba-
tions respectively. A nodal (J,H)-vortex of combinatorial type Γ is a datum (Σ, A, u, z)
consisting of

(a) a nodal curve Σ of combinatorial type Γ;
(b) a (J,H)-perturbed vortex on the principal component Σ ∼= Σ0.
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(c) For each i ∈ Vert(Γ)C , a flat J-holomorphic vortex (Ai, ui) on the cylinder Σi −
{0,∞} ∼= S1×R with holonomy given by the limiting holonomy of A0 on the l-th
end, where l is the label of i.

(d) For each j ∈ Vert(Γ)s a Jẑj -holomorphic sphere vj; Σj → P (X)ẑj in some fiber of
P (X);

satisfing matching conditions u(w−j ) = u(w+
j ) at the nodes w±j , j = 1, . . . ,m. We call the

pair (Σj, vj) a spherical bubble and the triple (Σi, Ai, ui) a cylinder bubble. A bubble is
trivial if the map is covariant constant on the bubble. A nodal vortex is polystable if each
trivial bubble has at least three special points; that is, each cylinder bubble on which u
is trivial is attached to at least one sphere bubble, and each sphere bubble has at least
three special points. A nodal vortex is stable if it has finite automorphism group.

Definition 5.2.4. An isomorphism of polystable vortices (Aα, uα), α = 0, 1 consists of

(a) a gauge transformation over the principal component
(b) automorphisms of the domains of the bubbles preserving the special points

such that the action of the gauge transformation on the principal component and on the
bundles over the fibers by evaluation at the special points, together with the automor-
phisms of domains, transforms (A0, u0) to (A1, u1).

Let MΓ(P,X, µ) denote the moduli space of isomorphism classes of polystable vortices

of combinatorial type Γ, and M fr
Γ (P,X, µ) the moduli space of isomorphism classes of

framed polystable vortices. As in the case with smooth domain, M fr
Γ (P,X, µ) admits an

evaluation map

evfr : M fr
Γ (P,X, µ)→ Xn,µ :=

n∏
i=1

Xµi .

If M fr
Γ (P,X, µ) → MΓ(P,X, µ) is a principal Gn

µ bundle with a classifying map then

combining this with the evaluation map defines

ev : MΓ(P,X, µ)→ X
n,µ

Gµ
.

Let M(P,X, µ) denote the union over combinatorial types

M(P,X, µ) =
⋃
Γ

MΓ(P,X, µ).

For any nodal curve Σ, be denote by Zi ⊂ Σi the set of nodal points in Σi, that is,
points at which other components of Σ are attached.

Definition 5.2.5. Suppose that (Aα, uα) is a sequence of vortices on Σ and (A, u) is
a polystable vortex. We say that (Aα, uα) Gromov converges to (A, u) if there exist a
sequence gα of gauge transformations such that

(a) gαAα converges uniformly to A on compact subsets of Σ0;



32 E. GONZALEZ, A. OTT, C. WOODWARD, AND F. ZILTENER

(b) u0,α converges to u∞ uniformly on compact subsets of the complement of Z0 ⊂ Σ0

of u;
(c) for every bubble component Σi of Σ, there exists a sequence εi,α →∞ and maps

φi,α : Σi−Bεi,α(wi) → Σ such that uα◦φi,α converges uniformly on compact subsets
of the complement of Zi ⊂ Σi to ui,∞.

(d) for any wj ∈ Zj, the energy lost

m(wj) := lim
ε→0

lim
α→∞

E(uα ◦ φi,α;Bε(zj))

is equal to the sum of the energies on the components of u attached to wj.
(e) for any wj ∈ Zj, φ

−1
α,i ◦ φα,j converges to wj uniformly on compact sets in a

neighborhood of wi.
(f) if zi is contained in Σj, then zi = limα→∞ φ

−1
j,α(zi,α).

A sequence (Aα, uα) of polystable vortices Gromov-converges to a polystable vortex
(A, u) if there exists a sequence of contractions on the trees Γα → Γ, and properties
similar to those above. The definition is similar to that in [7, Section 5.5] and omitted.

A subset C of M(P,X, µ) is Gromov closed if any Gromov convergent sequence in
C has limit point in C, and Gromov open if its complement is closed. This induces a
topology in M(P,X, µ).

Theorem 5.2.6. M(P,X, µ) is compact and Hausdorff. Furthermore, any convergent
sequence is Gromov convergent.

The proof takes up the rest of the section.

5.3. Energy quantization. The following is an energy quantization result for bubbles
in the fibers of P (X):

Lemma 5.3.1. There exists a constant ~ > 0 such that any non-constant holomorphic
map u : P1 → P (X) having values in the fiber P (X) has energy at least ~.

Proof. By the standard result [7], since each fiber is equivariantly isomorphic (non-
canonically) to X. �

Next we prove energy quantization of cylindrical bubbles with flat connections.

Proposition 5.3.2. For any conjugacy class C ⊂ G, there is a constant ε = ε(Σ, C)
such that any zero-area vortex (A, u) on the cylinder with holonomy in C and energy
E(A, u) < ε(Σ, C) is trivial in the sense that u is covariant constant.

We reduce this to energy quantization for holomorphic strips with Lagrangian bound-
ary conditions.
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Proposition 5.3.3. Let (X,ω) be a compact symplectic manifold and L+, L− ⊂ X
compact Lagrangian submanifolds intersecting cleanly and J ∈ J (X) a tame almost
complex structure. There exists a constant ε = ε(L+, L−, J) such that if u : R× [−1, 1]→
X is a J-holomorphic map satisfying the boundary conditions u(R × {±1}) ⊂ L± and
the energy estimate E(u) < ε. then u is trivial.

For the proof of Proposition 5.3.3 we need the following result. If X is a manifold and
Y ⊂ X is a submanifold, we denote by NXY the normal bundle of Y in X.

Lemma 5.3.4. Let X be a manifold, i± : Y± → X submanifolds intersecting cleanly,
and ω ∈ Ω(X) a closed differential form with i∗±ω = 0. Then there exists a neighborhood
U of Y+ ∩ Y− and a form α ∈ Ω(U) such that dα = ω|U and i±|∗U∩Y±α = 0.

Proof. By the local model theorem for clean intersections [5, Proposition C.3.1], there
exists a neighborhood U of Y+∩Y− in X and a diffeomorphism ϕ of U to a neighborhood
ϕ(U) of the zero section in Nx(Y+ ∩ Y−) such that

ϕ(U ∩ Y±) = ϕ(U) ∩NY±(Y+ ∩ Y−).

In particular, ϕ(U ∩ Y±) is a sub-bundle of NX(Y+ ∩ Y−). Scalar multiplication on the
fibers of NX(Y+ ∩ Y−) defines a strong deformation retraction to Y+ ∩ Y−,

ψ : [0, 1]× U → U, (λ, x) 7→ ϕ−1(λϕ(x)).

Let Vt ∈ Vect(U) be the time-dependent vector field generating ψ,

Vt =
d

dt
ψ(x, t).

The Poincaré formula

α =

∫ 1

0

ψ∗t ι(Vt)ωdt

produces the required primitive since

dα =

∫ 1

0

ψ∗tLVtωdt

=

∫ 1

0

d

dt
ψ∗tωdt

= ψ∗1ω − ψ∗0ω
= ω.

The restriction of α to Y± is

i∗±α =

∫ 1

0

ψ∗t i
∗
±ι(Vt)ωdt

=

∫ 1

0

ψ∗t ι(Vt)ι
∗
±ωdt

= 0

since Vt is tangent to Y±. The Lemma follows. �
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Proof of Proposition 5.3.3. We set Y± := L± and denote by i± : Y± → X the inclusions.
Since L± is Lagrangian the hypotheses of Lemma 5.3.4 are satisfied. So let U and α be
as in the conclusion of that lemma. Since X,L+, L− are compact, there exists a constant
δ > 0 such that if x ∈ X then

(74) max(dist(x, L+), dist(x, L−)) < δ =⇒ x ∈ U.

By the apriori lemma for holomorphic maps with Lagrangian boundary conditions [7,
Lemma 4.3.1] there exists a constant ε0 > 0 such that if u : R × [−1, 1] → X is a
holomorphic map satisfying u(R× {±1}) ⊆ L± and E(u) ≤ ε0 then

(75) |du(z)|2 ≤ 8

π

∫
B2(s,±1)∩R×[−1,1]

|du|2,

for every s ∈ R and z ∈ B̄1(s,±1) ∩ R× [−1, 1]. Let u be such a map. It follows that

(76) ‖∂tu(s, ·)‖L1([−1,1]) ≤ 2

√
8

π
E
(
u, [s− 2, s+ 2]× [−1, 1]

)
,

for every s ∈ R. We define

(77) ε := min
{
ε0,

π

32
δ2
}
.

Assume that E(u) ≤ ε. Fix (s, t) ∈ R× [−1, 1]. Then

d
(
u(s,−1), u(s, t)

)
≤

∫ t

−1

|∂tu(s, t′)| dt′

≤ 2

√
8

π
E(u) < δ.(78)

Here in the second inequality we used (76) and in the last inequality we used (77). It
follows that dist(u(s, t), L−) < δ. Similarly, we have dist(u(s, t), L+) < δ. By (74) we
have

(79) u(s, t) ∈ U.

Hence, denoting E(s) := E
(
u,
(
(−∞,−s) ∪ (s,∞)

)
× [−1, 1]

)
, we have for every s ≥ 2

E(u) =

∫
[−s,s]×[−1,1]

u∗ω + E(s)

=

∫
{s}×[−1,1]

u∗α−
∫
{−s}×[−1,1]

u∗α + 0 + E(s)

≤
(
‖∂tu(s, ·)‖L1([−1,1]) + ‖∂tu(−s, ·)‖L1([−1,1])

)
‖α‖L∞(X) + E(s).

Here in the second step we used the fact dα = ω|U , Stokes’ theorem and the fact i∗±α = 0.
By (76) the last expression tends to 0, as s→∞. It follows that E(u) = 0. This proves
Proposition 5.3.3. �
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Proof of Proposition 5.3.2. We choose a representative g ∈ C and define X̃ := X × X
with the symplectic form ω̃ := −ω ⊕ ω and the Lagrangian submanifolds

L− :=
{

(x, x)
∣∣x ∈ X}, L+ :=

{
(x, g−1x)

∣∣x ∈ X}.
Let (A, u) be a zero-area vortex on P ; we view u as an equivariant map from P to
X and A as a g-valued one-form on P . The pair (A, u) defines a J-holomorphic strip
ũ with boundary in L± as follows. Let π : P → R × S1 denote the projection and
ρ : R × [−1, 1] → R × S1 the be map ρ(s, t) := (s, eπit). Since A is flat and the
conjugacy class of the holonomy around the circle {0}× S1 equals C, there exists a map
f : R× [−1, 1]→ P solving the equations

A(∂sf) = 0, A(∂tf) = 0, f(s, 1) = f(s,−1)g, π ◦ f = ρ

for every s ∈ R. Let X̃ = X×X denote the Cartesian product equipped with the almost
complex structure J̃ = −J × J . Let ũ : R× [−1, 1]→ X ×X denote the J̃-holomorphic
map

ũ(s, t) = ((u ◦ f)(s/2,−(t+ 1)/2), (u ◦ f)(s/2, (t+ 1)/2)).

Then ũ satisfies the boundary conditions ũ(s,±1) ∈ L± and its energy is E(ũ) = E(u,A).
Since G is compact, X admits a G-invariant metric. Therefore, the hypothesis of Lemma
3.0.17 are satisfied and hence the intersection L− ∩ L+ is clean. Therefore it follows by
Proposition 5.3.3 that if E(ũ) has energy less than ε(L−, L+, J̃) then ũ is trivial, and
hence u is covariant constant. This proves Proposition 5.3.2. �

5.4. Removal of singularities. We use the exponential decay results of the previous
sections to prove a removal of singularities theorem for vortices (A, u) on the punctured
disk. The result is not a full removal of singularities theorem: we assume that the con-
nection has a C0 extension. If we knew that the connection had a smooth extension,
then removal of singularities would be a straightforward consequence of removal of sin-
gularities for pseudoholomorphic maps, viewing u as a pseudoholomorphic map to P (X).
However, Uhlenbeck compactness only provides a C0 limit to the connection, so we have
no control over the higher derivatives.

Proposition 5.4.1. Suppose that (A, u) is a smooth finite energy vortex on the punctured
disk B − {0}, and that A admits a C0 extension over B. Then u admits a C0 extension
over B, and the pair (A, u) is gauge equivalent to a smooth vortex on B.

Sketch of proof. Removal of singularities for pseudoholomorphic maps is [7, Lemma 4.5.1].
The proof for vortices is similar: one first shows that u admits a W 1,p extension for p > 2
with 2−p sufficiently small. Elliptic regularity then implies that the pair (A, u) is gauge
equivalent to a smooth vortex.

Suppose that the mean value inequality of Proposition ?? holds for all balls of energy
at most C. Choose r0 so that E(A, u;B2r0) < C. For 0 < r ≤ r0 let

ε(r) = E(A, u;Br)
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denote the energy of the restriction of (A, u) to Br. Then ε extends to a continuous
function on [0, r0] with ε(0) = 0. By the mean value inequality ??

|∇Au(reiθ)|2 ≤ Cε(2r).

This implies that the length of γr(θ) = u(reiθ) satisfies

`(γr) ≤
√
Cε(2r)

which goes to zero as r → 0. From the isoperimetric inequality (??) (for trivial twisting
g0 = 1) we obtain

E(A, u;Br) ≤ c`(γr)
2.

Hence

ε(r) ≤ c`(γr)
2

≤ πcr2

∫
S1

|∇Au(reiθ)|2

= 2πcr
d

dr
ε(r).

Integrating from r to r1 gives for µ = 1/2πc

ε(r) ≤ c1r
µ.

So
|du(ρeiθ)|2 ≤ Cρ−2ε(2ρ) ≤ Cρ2µ−2.

Hence for p with 2 < p < 2/(1− µ)∫
Br

|∇Au|p ≤ C

∫ r

0

ρ1−p(1−µ)dρ <∞.

It follows as in [7] that u lies in W 1,p(Br). Now elliptic regularity Proposition ?? implies
that (A, u) is gauge equivalent to a smooth solution. �

5.5. Gromov compactness for manifolds with cylindrical ends. Let X be a man-
ifold. A cylindrical end of X is a proper embedding φ : [0,∞) × Y → X, where Y is
a closed manifold of dimension dimX − 1. We say that X has cylindrical ends if there
exists a collection (Yi, φi)i∈I of cylindrical ends of X such that X \

⋃
i∈I φi

(
(0,∞)× Yi

)
is compact. Let X be a manifold with cylindrical ends. A collection of cylindrical ends
for a principal bundle P → X is a collection Qi → Yi of principal G-bundles on the
manifolds Yi, and isomorphisms φ∗iP → π∗iQi where πi : [0,∞)× Yi → Yi. Any principal
bundle over X admits cylindrical ends, by parallel transport using a connection. Let
P → X be a principal G-bundle equipped with cylindrical ends and F a G-manifold.
The associated fiber bundle P (F ) = (P ×F )/G is then a manifold with cylindrical ends
modelled on Qi(F ) on the i-th cylindrical end.

An almost complex structure J on a manifold with cylindrical ends X is asymptotically
constant if for each end, there exists an almost complex structure Ji on R× Yi invariant
under translations such that ψ∗J(· + s, ·) converges to Ji as s → ∞ in W loc

1,p . Let J be
an asymptotically constant almost complex structure on X. A sequence Jν of almost
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complex structure on X converges to J if ψ∗Jν(s, t) converges to Ji as s→∞ uniformly
in ν.

The following terminology is taken from symplectic field theory [?]. Our situation is
somewhat easier since the curve Σ is fixed. Let πl : Yl × R → Yl denote the projection
on the first factor.

Definition 5.5.1. A holomorphic building in X consists of a nodal curve with cylindrical
ends Σ consisting of a principal component Σ0 and sphere or cylinder bubbles Σ1, . . . ,Σk,
a holomorphic map u0 : Σ0 → X and for each bubble a holomorphic map from Σi to
either X or to one of the cylindrical ends Yl × R, satisfying matching conditions at the
nodes ui+(j)(w

+
j ) = ui−(j)(w

−
j ) if the node maps to X and

πl( lim
z→w+

j

ui+(j)(z)) = πl( lim
z→w−j

ui−(j)(z))

for the nodes mapping to infinity on the cylindrical end. A holomorphic building is stable
if each sphere or cylinder bubble on which u is trivial has at least three nodal points.

An admissible annulus in Σ is an open holomorphic embedding ψ : (s0, s1)× S1 → Σ
such that one of the following conditions is satisfied:

(a) s0 ≥ 0 and there exists a cylindrical end φ : (0,∞)× S1 → Σ such that ψ is the
composition of φ with the inclusion (s0, s1)× S1 → (0,∞)× S1; or

(b) There exists a ball φ : Br ⊂ C and a holomorphic embedding Br → Σ such that ψ
is the composition of φ with the exponential map (s0, s1)×S1 → C, (r, θ) 7→ er+iθ.

Theorem 5.5.2. Let (Σ, j) be a Riemann surface without boundary, ωΣ be a j-compatible
area form on Σ, X be a manifold without boundary and with finitely many cylindrical
ends, p > 2, for ν ∈ N let ων be a symplectic form on X, Jν be an ων-compatible
almost complex structure on X, both of class locally W 1,p, and let uν ∈ W 1,p

loc (Σ, X) be a
Jν-holomorphic map. Assume that Jν converges to some J0, and ων converges to some
ω0, both weakly in W 1,p

loc , for every compact subset Q ⊆ Σ there exists a compact subset
K ⊆ X such that uν(Q) ⊆ K, for every ν,

sup
ν
Eων ,Jν (uν ,Σ) <∞,(80)

(81)

and there exist constants C, ε > 0 such that for each admissible annulus ψ : (s0, s1)×S1 →
Σ satisfying Eων ,Jν (ψ∗uν) < ε, we have

|duν |ων ,Jν ≤ Ce−εmin(s−s0,s1−s)

then there exists a subsequence of uν that converges to a stable holomorphic building
u : Σ→ X.

5.6. Proof of compactness. Suppose that (Aα, uα) is a sequence of vortices.

Definition 5.6.1. z ∈ Σ is a bubble point for the sequence (Aα, uα) if there exists a
convergent sequence zα → z such that dAαuα(zα)→∞.



38 E. GONZALEZ, A. OTT, C. WOODWARD, AND F. ZILTENER

Proposition 5.6.2. If (Aα, uα) is a sequence of vortices whose energy is bounded by C,
then there is a finite set of bubbling points Z ∈ Σ, and a vortex (A∞, u∞) on Σ such that
a subsequence still denoted (Aα, uα), converges after gauge transformations to (A∞, u∞)
on compact sets of Σ\Z in all derivatives.

Proof. To show this, for a bubbling point s, limzα→s |dAαuα(zα)| = ∞. Let ε > 0 small
enough so that a neighborhood of s is consider as an open set in C. By Hofer’s lemma
[7, 4.6.4] to the function z 7→ |dAαu(z)| for |z − s| < ε, the points zα and the constants
δα := |dAαuα(zα)|−1/2, there exist sequences ζα ∈ Σ, εα > 0 such that

ζα → s; sup
|z−ζα|<εα

|dAαuα| ≤ 2cα; εα → 0; εαcα →∞,

where cα := |dAαuα(ζα)|. Let ψα be the sequence defined on the ball Bεαcα(0) given by
ψα(z) := (ζα + z/cα). This sequence converges to s uniformly in compact sets. The
rescaled sequence

vα(z) := uα(ψα(z))

has uniformly bounded first derivative on compact sets, on arbitrarily large domains,
since the sequence εαcα →∞. The maps vα are pseudoholomorphic with respect to the
almost complex structure determined by the re-scaled connections c−1

α Aα, which have
uniformly bounded curvature. Using Theorem 5.1.1 we get, after gauge transformations,
that the sequence (c−1

α Aα, vα) converges uniformly to a pair (A0, v) on compact sets, in
all derivatives. Note that the limit A0 is necessarily the trivial connection, since cα →∞,
and that the map v necessarily lies on the fibre s,

v : C→ P (X)s

since standard removal of singularities for finite energy maps implies that v extends to
a smooth J-holomorphic map v : P1 → P (X)s, where J is the given almost complex
structure on X, and v is non constant.

By energy quantization, sphere bubbles can develop at most at finitely many points Z.
On the complement Σ−Z, dαuα is uniformly bounded in compact sets and (Aα, uα) has
bounded energy, then by Theorem 5.1.1 Aα converges to a connection A∞ on compact
subsets of Σ and uα converges to a section u∞ on compact subsets of Σ − Z in all
derivatives, so that (A∞, u∞) is a solution to the vortex equations on Σ − Z. Since
u∞ is a finite energy pseudoholomorphic map from Σ to P (X), removal of singularities
implies that it extends to all of Σ. (A∞, u∞) is the principal component of the limiting
sequence. �

Let s ∈ Σ be a bubbling point, and vα the sequence obtained by re-scaling as in the
proof of Proposition 5.6.2. Fix a trivialization of P in a neighborhood of s. Let

m(s) := lim
ε→0

lim
α

(uα;Bε(s))

be the energy of the sequence being captured at s. By choosing a subsequence, this
limit exists since the energy is uniformly bounded. Since bubbling occurs near s, we
can restrict the sequence uα to the ball BR(s) for R > 0. Moreover, let ζ ′α ∈ BR(s)
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be the point where the function dAαuα attains its supremum on BR(s). The section
ũα := uα(z + ζ ′α) is such that attain its sup at z = 0 and thus the sequence ũα has a
bubbling point at z = 0, since the sequence ζ ′α → s.

Definition 5.6.3. The sequence obtained by soft rescaling is the sequence vα(z) =
uα(εαz) where the rescaling constants εα are defined so that

(82) E(ũα;Bεα(0)) = m(s)− h/2,

where h < min{~/2, c2/2} where ~ is the energy quantization constant and c2 is the
constant guaranteeing exponential decay in Theorem ??.

For any ε > εα the energy of ũα on the annulusBε(0)\Bεα(0) is at the most δ/2 and then
there is not enough energy to form another bubble in this annulus. Let ψα(z) := ζ ′α+εαz
and let (A′α(z), vα(z)) := (Aα(ψα), uα(ψα)) denote the rescaled sequence defined on the
ball BR/εα(0).

Proposition 5.6.4 (Bubbles connect). Consider the sequence vα constructed by soft
rescaling above.

(a) There is a finite energy pseudoholomorphic map v : C → P (X)s and a finite set
of points Z1 ⊂ C so that the sequence v′α converges uniformly in all derivatives
on C\Z1 to v. By removal of singularities v extends to P1.

(b) Let mj := limε→0 limαE(vα;Bε(sj)) is the energy being captured by the bubbling
point sj ∈ Z1, then

m0 := E(v) +
∑
sj∈Z1

mj.

Therefore, there is no other possible bubbles forming at s, only at the points sj ∈
Z1.

(c) We have u(z) = v(∞) in P (X)z.

Proof. This sequence by construction has uniformly bounded energy. By the previous
discussion, there exists a finite set Z1 ⊂ C, and a vortex (A′0, v) such that a subsequence
still denoted (A′α, vα) converges uniformly on compact sets in all derivatives to (A′0, v).
Since εα → 0, A′ is necessarily the trivial connection. Also note that the function |dv(z)|
has its maximum at 0, thus 0 ∈ Z1. v has finite energy, and since δα → 0, it is defined
on arbitrarily big subsets of C. Removal of singularities shows that it extends to a J-
holomorphic map v : P1 → P (X)s, with J exactly the almost complex structure on X,
since the connection A′ is trivial. Now, recall that by Step 1, a subsequence of (Aα, uα)
converges in all derivatives on compact sets of Σ\Z to the principal component vortex
(A∞, u∞). The pair (A0, v) is the first bubble that appears attached to the principal
component.

The rest of the proposition is as in the proof of [7, 4.7.1], using that the exponential
decay for the energy on annuli near s for the sequence uα of JAα-holomorphic curves
proved in Proposition ??.
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Let m(s) be the energy lost at the point s. Note that we do not need to distinguish the
Yang-Mills-Higgs energy with the twisted energy EAα(uα;Bε(s)) here, since the energy
of the connection on Bε(s) approaches zero. That is, we also have

m(s) = lim
ε→0

lim
α→∞

EAα(uα;Bε(s)).

Note that limR→∞ limEAα(uα;BRεα) = m(s), since otherwise it would exist a subse-
quence still denoted by uα and a constant ρ > 0 such that for R ≥ 1,

lim
α
EAα(uα;BRεα) ≤ m(s)− ρ.

Thus for R > 1, the energy in the annuli satisfies limαEAα(uα;A(εα, Rεα)) ≤ c2/2 − ρ,
which is a contradiction.

To finish the proof, note that EAα(uα;Bεα(s)) = EAα(vα;B1(s)) = m0 − h/2 ≥ m0 −
~/2, and both sequences uα, vα capture energy m(s) at s. This shows that Z1 ⊂ B1(s),
that is all bubbling points of vα are in the unit ball of s. Then, for all balls Bε(s) ⊂ B1(s)
we have

m(s) = lim
R→∞

lim
α
EAα(vα;BR(s))

= lim
R→∞

lim
α
EAα(vα;BR(s)\Bε(s)) + lim

α
EAα(vα;Bε(s))

= lim
R→∞

E(v;BR(s)\Bε(s)) + lim
α
EAα(vα;Bε(s))

= E(v;C\Bε(s)) + lim
ρ→0

lim
α
EAα(vα;Bε(s)\ ∪j∈Z1 Bρ(sj)) +

∑
sj∈Z1

m(sj)

= E(v) +
∑
sj∈Z1

m(sj).

By definition, there exists a sequence κα → 0 such that

lim
α→∞

EAα(uα;Bκα(s))→ m(s).

[log(δα), log(κα)] × S1. By the uniform mean value inequality (??), on the subset
[log(δα) + 1, log(κα) − 1] × S1 the twisted derivatives dAαuα are uniformly bounded.
The exponential decay lemma ?? shows exponential decay of the energy on this region.
Recall from [7, p. 103] that since there is not enough energy for bubbling, the energy
on the outer region of the annulus must approach zero. Hence the energy density on the
annulus is controlled by the energy on the inner region.

Since the connections Aα are already in Coulomb gauge with respect to the trivial
connection, exponential decay of the distance. We have

u∞(z) = lim
α→∞

(uα(κα)), v∞(∞) = lim
α→∞

(uα(δα))

since there is not enough energy on the annulus A(δα, κα) for further bubbling.
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Hence

dist(v∞(∞), u∞(0)) ≤ lim
α→∞

dist(uα(κα), uα(δα)) = 0

by exponential decay. �

We can now inductively construct the spherical components of a stable holomorphic
section on the fibre P (X)s by applying the previous step to all points sj ∈ Z1. All
bubble maps are holomorphic with respect to the trivial connection, and thus one can
just think of lines in X. This process stops since the energy m0 is finite. The case when
Z has more than one element is left to the reader.

It remains to construct the bubble trees attached to the cylindrical ends. If supα |dAα(uα(zα))|
is unbounded for some sequence zα → zi going to infinity on the i-th cylindrical end,
there are two possibilities that can happen. First, on the cylindrical ends there is also
translational symmetry, which means that other vortices can form at infinity on the
cylindrical ends. Second, spherical bubbles on these cylindrical bubbles can also form.
For any time s ≥ 0, let τs : S1 × (0,∞)→ S1 × (0,∞) denote translation by s.

Suppose that there is a sequence of points zα on the cylindrical end such that the r-
coordinate of zα goes to infinity and dAαu(zα) is bounded from above and below. Thus,
there must be a sequence of numbers rα,a vortex (B, v) on the trivial bundle over the
cylinder S1 × R, satisfying the flat limit of the vortex equations

(83) FB = 0, ∂JBv = 0,

and a finite set Z so that τrα(Aα, uα) converges on compact sets on the complement Σ\Z
to (B, v) in all derivatives. Note that after gauge transformation any connection on the
cylinder is in temporal gauge, if flat it is then of the form A = d + adθ, for a constant
element a ∈ g, and d the trivial connection. Then, the holonomy at infinity of the limit
vortex agrees with the holonomy at infinity of the sequence. By energy quantization
for g-twisted pseudoholomorphic cylinders Theorem ??, only finitely many cylindrical
bubbles can occur.

To capture the first bubble, let m0 := limT limα(Aα, uα; (T ;∞) × S1) be the energy
of the sequence that dissipates at infinity. Let h be a constant smaller than min{~, k},
where k is the constant in Theorem ??. Choose rα so that the energy E(uα; (rα,∞) ×
S1) = m0 − h/2, by gauge transforming the pairs (Aα, uα) if necessary and choosing a
subsequence, we can assume that rα is bigger than the constant r0 of Theorem ??, so
that the covariant derivative ∇Au and the energy E(u) have exponential decay on the
cylindrical end. Let (Bα, vα) := τrα(Aα, uα) be the rescaled sequence. This sequence has
bounded energy vortices. By using Step 1, there is a finite set Z ⊂ S1 × R and a flat
vortex (B, v) on the cylinder such that (Bα, vα) converges in R× S1\Z in compact sets
with all derivatives. Moreover, the choice of rescaling ensures that no further bubbling
for the original sequence can happen at infinity in the i-th cylindrical end. Exponential
decay of u at infinity, as well as exponential decay for flat vortices as stated in Proposition
?? ensures the existence of limits which by construction connect: u(∞) = v(−∞).
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We now apply this process inductively, after capturing the first bubble, the limiting
sequence is as follows. For j = 1, . . . ,M there are sequences {rjα} of positive numbers
such that rjα → ∞ as α → ∞, flat vortices (Aj, vj) on the cylinder R × S1 and finite
sets of points Zj ⊂ R × S1 so that τrα(Aα, uα) converges to (Bj, vj) on R × S1\Zj on
compact sets and there is spherical fibre bubbling occurring on points s ∈ Zj. Now
apply the arguments used in Case 1 to build the bubble tree on the fibres P (X)s, s ∈
Zj. The cylindrical bubbles also have limits at infinity, since the exponential decay for
finite energy flat vortices Proposition ?? and by construction they connect: vj(∞) =
vj+1(−∞). This finishes the proof of the Theorem 5.2.6.

5.7. Local distance functions. To show that the topology is Hausdorff we need to
describe Gromov convergence of stable vortices in terms of an auxiliary function called
the distance function. Our function is the same as in [7, p. 134] with an added term
including the connection.

Definition 5.7.1. The local distance function ρε for ε > 0 is

ρε((A, u), (A′, u′)) = inf
f :T→T ′

inf
g∈G(P )

inf
φ
ρε((A, u), g(A′, u′); f, φ),

where

ρε((A, u), (A′, u′); f, φ) :=‖A′ − A‖L2

+ sup
j
|E(A, u;Bε(wj))− E(A′, u′;φ(Bε(wj)))|

+ sup
i∈Γ

sup
z /∈Bε(wi)

d(u′f(i)φi, ui)

+ sup
i 6=j,f(i)=f(j)

sup
z /∈Bε(wj)

d(φ−1
i+(j)φi−(j), wj)

+ sup
f(i) 6=f(j)

d(φ−1
j (zf(i)f(j)), wi)

+ sup
i∈T,1≤j≤n

d(φ−1
i (z′f(i)j), wi)

depends on the contraction f : Γ→ Γ′ such that map the nodes i→ i′ and

φ = (φ1, . . . , φn), φi : Σi −Bε(Zi)→ Σ′f(i)

is holomorphic isomorphism of Σi − Bε(Zi) onto its image. We set ρε = ∞ if there are
no contractions f .

Lemma 5.7.2. For ε sufficiently small, (Aα, uα) Gromov converges to A, u, if and only
if ρε((Aα, uα), (A, u)) converges to zero.

Proof. This is the vortex version of [7, Lemma 5.5.8]. The forward direction is immediate
from the definition of Gromov convergence. The reverse implication holds for any ε
sufficiently small so that the energy of (A, u) on Bε is less than ~/2 where ~ is the
energy quantization constant of the previous section. Since ρε → 0, (Aα, uα) converges
to (A, u) uniformly on compact subsets of the complements of the balls Bε(wj). Since
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there is no additional bubbling, (Aα, uα) converges to some limit (A∞, u∞) with the
same combinatorial type as (A, u) and (A∞, u∞) = (A, u) on the complement of the
balls Bε(wj). By unique continuation for pseudoholomorphic maps, u∞ = u everywhere
on Σ, which completes the proof. �

Proposition 5.7.3. The Gromov open sets form a topology for which any convergent
sequence is Gromov convergent. Furthermore, any convergent sequence has a unique
limit.

Proof. By [7, Lemma 5.6.5] it suffices to show that for all (A, u) there is an ε0 > 0 such
that for all 0 < ε < ε0, the function ρε satisfies the following:

(a) ρε((A, u), (A′, u′)) = 0 if and only if (A, u) = (A′, u′).
(b) (Aα, uα) converges to (A, u) if and only if ρε((Aα, uα), (A, u)) converges to 0.
(c) Suppose that (Aα, uα) converges to (A, u). Then lim supα ρε((Aα, uα), (A′, u′)) ≤

ρε((A, u), (A′, u′)).

(a) Suppose ρε((A, u), (A′, u′)) = 0. Then after gauge transformation and reparametriza-
tion A = A′, and u = u′. (b) and (c) follow from Lemma 5.7.2. �
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