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Abstract

The connections between symplectic 4-manifolds, Lefschetz fibrations, and mapping
class groups allow the use of symplectic techniques to prove statements about mapping
class groups of surfaces, by constraining the set of allowable monodromies. In this
paper we set out to prove these statements more directly. For planar surfaces, we
exhibit an elementary proof that any factorization of a boundary monodromy obtained
by a sequence of positive stabilizations of the identity into positive Dehn twists must
have the same number of factors. Further, motivated by Smith’s use of hyperbolic
methods to show that there are no factorizations of the identity for surfaces with
boundary [Sm], we demonstrate that a negative stabilization can never be factorized
as a product of positive Dehn twists. 1
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1 Introduction
In this paper, we are interested in two mathematical objects; the first are the map-

ping class groups of surfaces, which are groups of isotopy classes of homeomorphisms
on 2-manifolds; the second are Lefschetz fibrations; a Lefschetz fibration is a map
from a 4-manifold to a 2-manifold, which is a fibration (almost everywhere) except at
finitely many points. These two objects are closely related: we can associate elements
of the mapping class group of the fiber to monodromies on the corresponding Lefschetz
fibration, and we can construct a Lefschetz fibration from the mapping class group
factorization of a given surface.

Lefschetz fibrations also have a separate connection to symplectic 4-manifolds.
Lefschetz fibrations can be thought of as a topological description of symplectic 4-
manifolds, because, roughly speaking, symplectic 4-manifolds are manifolds that admit
a Lefschetz fibration. This connection means that results concerning Lefschetz fibra-
tions have been proven using symplectic geometry methods (see [Gom], [Don],[Ent],
[El], [Pr] and [OS]). We are interested in two particular results, which are stated
precisely in theorem 3.1 and theorem 3.5 in section 3. Theorem 3.1 states that if a
4-manifold with a Lefschetz structure has the same boundary as that of Σ̄×D2 (σ̄ is a
surface with boundary), then the manifold must be diffeomorphic to Σ̄×D2. Theorem
3.5 states that 4-manifolds can be classified as tight or overtwisted, and 4-manifold
with a Lefschetz structure (which means that they have a symplectic filling) are tight
(the two results will be explained with more detail later in the paper).

Because of the relation between Lefschetz fibrations and mapping class groups, the
two theorems mentioned above tell us properties of mapping class group factorizations.
In particular, theorem 3.1 tells us two properties of a mapping class group of surface
with boundary (theorems 3.2 and theorem 3.4): identity cannot be factorized into
positive Dehn twists, and a monodromy arising from stabilization can only be factorized
into positive Dehn twists. Theorem 3.5 tells us that, for a surface with boundary, a
monodromy arising from a negative stabilization cannot be factorized into positive
Dehn twists (theorem 3.6). However, because the results are proven with symplectic
geometry, their proofs are not very explicit in the context of mapping class groups.

Thus, to find elementary explanations of these consequences of symplectic geometry,
we attempted to prove the consequences using only methods from mapping class groups.
Motivated by [PV], we studied the mapping class group of Dn, the disk with n holes,
as an example, and proved the consequences for Dn. We were then motivated to study
abelianizations of mapping class groups, which gave some limited insight. Motivated
by [Sm] and [Hon], we also studied the hyperbolic metric on the universal cover of a
surface, and we managed to obtain some results there. Our results will be presented
later.

In this paper, we will first provide background information on the mapping class
group and Lefschetz fibrations, with the aim to make the paper self-contained. Then
we will state the results that come from symplectic geometry, and explain how they
give consequences in the mapping class group. Finally, we will present our investigation
of these consequences using elementary methods.
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2 Background
In this section, we will provide background on the mapping class group and Lef-

schetz fibrations. We will explain how to identify mapping class group factorizations
from Lefschetz fibrations, and how to construct Lefschetz fibrations from mapping class
group factorizations. Then we will explain the Hurwitz problem, an open problem con-
cerning the classification of Lefschetz fibrations (for more on the Hurwitz problem, see
[Au]).

2.1 Mapping class groups
We first introduce the notion of a mapping class group. We note that all of the

material in this section can be found in greater detail in Farb and Margalit’s book
[FM].

Definition 2.1. The mapping class group of an oriented topological space X, denoted
MCG(X), is defined to be

MCG(X) := π0(Homeo+(X)) = Homeo+(X)/ ∼

where h ∼ h′ means h is isotopic to h′. Here Homeo+(X) denotes the group of orien-
tation preserving homeomorphisms of X.

If X has boundary, we define MCG(X, ∂X) to be the group of isotopy classes
of homeomorphisms that fix the boundary pointwise. Likewise, if X has punctures
we define MCG(X) to be the isotopy classes of homeomorphisms that permute the
punctures among themselves.

In this paper we will be concerned with the case when X = S is a surface. Let
ΓS = {γ ⊂ S : γ is a simple closed curve}/ ∼, where γ1 ∼ γ2 ⇐⇒ γ1 is isotopic to γ2.
We say that a simple closed curve γ ⊂ S is called separating if S\γ is not connected,
and nonseparating otherwise.

Let A = I × S1 denote the annulus with coordinates parametrized by (r, t) ∈
[0, 1]× [0, 2π]/({0} ∼ {2π}).

Definition 2.2. Let γ be a simple closed curve and let N be an annular neighborhood
of γ, i.e. there is a homeomorphism h : N → A. A Dehn twist γ ⊂ S, denoted
Tγ ∈ Homeo+(S), is given by

Tγ(x) :=
{
h−1 ◦ f ◦ h(x) x ∈ N
x x /∈ N

where f ∈ Homeo+(A) is the twist given by

f(r, t) = (r, t+ 2πr).

We will abuse notation and write Tγ to denote the isotopy class of the Dehn twist
about γ ∈ ΓS in MCG(S). It is straightforward to check that twisting about an isotopy
class of simple closed curves is well defined up to isotopy.

We call a Dehn twist positive if it twists the surface in a clockwise manner with
respect to the surface orientation, and negative otherwise. An illustration of a positive
Dehn twist is given in figure 1.
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Figure 1: A positive Dehn twist in an annulus.

An important fact about mapping class groups of surfaces is that they are generated
by Dehn twists. Let Sg denote a surface of genus g with no boundary.

Theorem 2.3 (Dehn-Lickorish). For g ≥ 0, the group MCG(Sg) is generated by finitely
many Dehn twists about nonseparating simple closed curves.

Wee [FM] for a proof. In fact more is true: Any surface with boundary (but no
punctures) is generated by Dehn twists. See section 5 for the Gervais presentation of
the mapping class group which gives a presentation for surfaces with boundary.

Example Consider the case g = 1. Then the compact surface of genus g is the torus
T 2, which has mapping class group

MCG(T 2) = SL2(Z) = 〈a, b | cdc = dcd, (cd)6 = 1〉,

via the action on the two basic curves u and v in the picture.

Figure 2: Torus with distinguished curves u, v (picture from [Ir]).

In a similar vein, the mapping class group of S1,1, the torus with one hole, is the
braid group on three strands

B3 = 〈c, d | cdc = dcd〉.

Before we end the section, we list a few basic lemmas from [FM]

Lemma 2.4. Let f ∈ MCG(S). Then we have fTγf−1 = Tf(γ).

Lemma 2.5. Let γ1, γ2 ∈ ΓS. Then Tγ1 = Tγ2 if and only if γ1 = γ2.
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2.2 Lefschetz fibrations
We now introduce Lefschetz fibrations, how they relate to symplectic 4-manifolds,

and how they can be associated with mapping class group factorizations.

Definition 2.6. A Lefschetz fibration on an oriented, compact smooth 4-manifold X
is a smooth surjection π : X → S, where S is a compact, connected, oriented surface
that is a submersion everywhere except at finitely many critical points where there are
local complex coordinates that give π the form π(z1, z2) = z2

1 + z2
2.

In this paper, we will only consider the cases S = S2 or S = D2. We will use Σ to
denote the regular fiber of a Lefschetz fibration.

Lefschetz fibrations are of particular interest because they correspond to symplectic
structures on 4-manifolds. We state two theorems that make this correspondence
precise.

Theorem 2.7 ([Gom]). Let f : X → S be a Lefschetz fibration and let [Σ] ∈ H2(X;R)
denote the homology class of the fiber. If [Σ] 6= 0, then X admits a symplectic structure
with symplectic fibers.

Theorem 2.8 ([Don]). Let (X,ω) be a compact symplectic 4-manifold. Then X carries
a symplectic Lefschetz pencil, i.e. there exists a finite set Γ ⊂ X and a map f : X\Γ→
CP1 = S2 such that f is modeled on (z1, z2) 7→ (z1 : z2) near each point of Γ, and f is
a Lefschetz fibration with (noncompact) symplectic fibers outside of Γ.

Corollary 2.9. The manifold X̂ obtained from X by blowing up at the points of Γ
admits a Lefschetz fibration f : X̂ → S2 with symplectic fibers.

As a result of this connection to symplectic topology, symplectic techniques can be
used to prove statements about Lefschetz fibrations, and ultimately about mapping
class groups of surfaces. More will be said on this in Section 3.

The local condition prescribes a specific topological structure to Lefschetz fibrations.
Let Γ ⊂ X denote the set of critical points and let p ∈ Γ. Let U be a neighborhood
of p such that the fibration can be described by π : (z1, z2) 7→ z2

1 + z2
2 , where (0, 0)

corresponds to the point p in these local coordinates. Then the regular fibers in the
restriction π : U → S are homeomorphic to {z2

1 + z2
2 = 1} ∼= TS1 ∼= A. Also note that

the local condition can be rephrased as π : (z1, z2) 7→ z2
1 +z2

2 = (z1 +iz2)(z1−iz2) = zw
by a C-linear change of coordinates. Thus the singular fiber in the restriction is given
by {zw = 0} is a transverse intersection of 2 open disks that intersect at the point
z = w = 0.

More precisely, let γ : I → S be a path where γ(t) ∈ S\π(Γ) for t < 1 and
γ(1) = q ∈ π(Γ). As t → 1 there is an open set homeomorphic to the annulus in the
fiber π−1(γ(t)) that gets pinched about a loop to a point until it locally becomes the
wedge of two discs as described above. This loop in the annulus (a subset of the regular
fiber) is called the vanishing cycle associated to the critical value q (Figure 3).

We now recall the definition of a fiber bundle.

Definition 2.10. Let B be a connected topological space with a chosen base point b0 ∈
B. A continuous map p : E → B is called a fiber bundle with fiber F if p−1(b0) = F
and p satisfies the local triviality condition, i.e. for each b ∈ B there exists an open
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Figure 3: Vanishing cycle in an annulus.

neighbourhood Ub of b and a homeomorphism φb : p−1(Ub) → Ub × F such that the
diagram commutes:

p−1(Ub) Ub × F

Ub

p

φb

proj1

The following theorem of Ehresmann will be useful.

Theorem 2.11 ([Ehr]). Any smooth map f : M → N between smooth, connected
manifolds which is surjective, proper, and a submersion is a fiber bundle.

Given a Lefschetz fibration π : X → S let Γ denote the set of critical points. Let
Dp denote a neighborhood of p ∈ π(Γ) homeomorphic to a disk with Dp ∩Dp′ = ∅ for
p, p′ ∈ π(Γ). Let Ŝ = S\

⋃
p∈π(Γ)Dp and X̂ = π−1(Ŝ). Note that both Σ̂ and X̂ are

closed subsets of compact manifolds, and hence are both compact.

Lemma 2.12. The map π : X̂ → Σ̂ is a fiber bundle.

Proof. Since both X̂ and Σ̂ are compact, π is proper and furthermore it satisfies all of
the conditions of Theorem 2.11. �

Proposition 2.13. There is a monodromy homomorphism φ : π1(Σ\π(Γ))→ MCG(F ).

Proof sketch. Let γ ∈ π1(Σ\π(Γ)). For each p ∈ π(Γ), choose mutually disjoint disks
Dp 3 p such that γ ∩Dp = ∅, and as before set Σ̂ = Σ\

⋃
p∈π(Γ)Dp and X̂ = π−1(Σ̂).

By Lemma 2.12 we see that π : X̂ → Σ̂ is a fiber bundle.
For each x ∈ γ, choose an open neighborhood Ux 3 x that satisfies the locally trivial

fiber bundle condition. Since γ ⊂ Σ̂ is compact, there is a finite subcover {Ui}i≤n ⊂
{Ux}x∈γ , ordered along γ. Let ψi,i+1 = φ−1

i+1 ◦ φi : π−1(Ui ∩ Ui+1) → π−1(Ui ∩ Ui+1)
denote the transition map. Define ψ := ψn−1,n ◦ · · · ◦ ψ1,2 ∈ Homeo(Un ∩ U1). It
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Figure 4: A good generating set for π1(D\π(Γ)).

can be shown that ψ does not depend on the choice of cover and that homotopic
curves give rise to isotopic homeomorphisms. We define φ(γ) = ψ. Finally, it is clear
that φ preserves the group structure since concatenating loops amounts to composing
homeomorphisms. �

2.3 Fibrations from monodromy data
Proposition 2.13 says that a Lefschetz fibration gives rise to a monodromy homo-

morphism. This section will outline how the converse is also true: given a monodromy
homomorphism we can construct a Lefschetz fibration with the prescribed monodromy
data. We will assume throughout that S = D, i.e. the base space is a closed disk.

Choose a basepoint x0 ∈ D\π(Γ). For each critical value p ∈ π(Γ), choose mutually
disjoint neighborhoods Dp homeomorphic to a disc, and let Cp = ∂Dp. Let αp : I → S
be a path with αp(0) = x0 and αp(1) = p.

Note that D\π(Γ) = Dn, the disk with n holes. Let γp ∈ π1(Dn) be the closed
curve based at x0 that follows α until intersecting Cp, loops around the circle Cp and
follows α back to x0 (see Figure 4). Then {γp}p∈π(Γ) is a generating set for π1(Dn)
such that each γp encloses exactly one critical value p. We will call such generating
sets, for instance the set in Figure 4, good.

Proposition 2.14. If γp is chosen as above, φ(γp) = Tvp, i.e. the monodromy around
γp is a Dehn twist about the vanishing cycle vp associated to p.

For a proof, see [Cas].

Theorem 2.15. There is a 1-1 correspondence between the set of monodromy repre-
sentations {φ : π1(Dn) → MCG(F )}, and the set of Lefschetz fibrations π : X → D
admitting fiber F with n vanishing cycles.

To see how to construct a Lefschetz fibration from a monodromy φ : π1(Dn) →
MCG(F ), first choose a good generating set {γp} for π1(Dn). From the monodromy
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Figure 5: A Hurwitz move on a pair of good generators.

we have that φ(γp) = Tvp , where the simple closed curve vp is well defined up to isotopy
due to Lemma 2.5. The following sketch of a construction will make the collection {vp}
the vanishing cycles of the resulting Lefschetz fibration.

Start with the trivial bundle Σ × D2. Given an ordering on the vanishing cycles,
there are unique lifts vp ↪→ Σ × S1 ⊂ ∂(Σ ×D2) such that when we attach 2-handles
along these embeddings with a prescribed framing condition, the resulting 4-manifold
is a Lefschetz fibration with the given vanishing cycles. Intuitively, a vanishing cycle
corresponds to an element of H1(X) being deleted, which corresponds to attaching a
2-handle in the construction which makes the vanishing cycle the boundary of a 2-cell.
For further details, see [Ful].

The ambiguity in this construction comes from the choice of generators for π1(Dn).
The issue is that, a priori, a different choice of generators might result in a different
Lefschetz fibration. However, it turns out that this does not occur.

Proposition 2.16. Any other set of good generators for π1(D\π(Γ)) can be obtained
by the action of an element of MCG(D\π(Γ)) = MCG(Dn) ∼= Bn, the braid group on
n strands.

The generators for MCG(Dn) are given by “half twists” σi that switch the punctures
i and i+ 1.

We can describe the action of σi on π1(Dn) by observing the action on the ordered
tuple of generators

(γ1, . . . , γi, γi+1, . . . , γn) 7→ (γ1, . . . , γi · γi+1 · γ−1
i , γi, . . . , γn).

An illustration of this is given in Figure 5.
Composing with the monodromy homomorphism gives an action of Bn on the cor-

responding Dehn twists (Tv1 , . . . , Tvn) given by

(Tv1 , . . . , Tvi , Tvi+1 , . . . , Tvn) 7→ (Tv1 , . . . , TviTvi+1T
−1
vi
, Tvi , . . . , Tvn),

which is the ith Hurwitz move.
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There is one additional action which preserves the structure of the Lefschetz fibra-
tion, which is the action of an element of the mapping class group ϕ ∈ MCG(Σ) on the
Lefschetz fibration X by fiber-wise action. This action maps each vanishing cycle v to
an image cycle ϕ(v), and thus acts as conjugation on Dehn twists in MCG(F ), giving
rise to the global conjugation action

(Tv1 , . . . , Tvn) 7→ (ϕTv1ϕ
−1, . . . , ϕTvnϕ

−1)

Combining these, we state:

Proposition 2.17. Suppose {γi} and {γ̃i} are good generating sets of π1(Tn) that are
in the same orbit under the actions of the Hurwitz moves and global conjugation. Then
the Lefschetz fibrations constructed from each generating set are diffeomorphic.

Finally, we prove a proposition for future reference.

Proposition 2.18. Let π : X → D be a Lefschetz fibration with n singular fibers and
regular fiber Σ. Then χ(X) = χ(Σ) + n.

Proof. The Lefschetz fibration is constructed by taking the trivial product Σ×D2 and
attaching 2-handles to a choice of n vanishing cycles. The trivial product deformation
retracts to Σ so we have χ(Σ ×D2) = χ(F ). Attaching the 2-handles corresponds to
adding 2-cells for every vanishing cycle, giving χ(X) = χ(F ) + n. �

2.4 The Hurwitz problem
From the previous sections, we know that Lefschetz fibrations with regular fiber Σ

are classified, up to isomorphism, by an ordered tuple of Dehn twists (Tγi) correspond-
ing to vanishing cycles γi on Σ, up to the actions of two moves:

1. global conjugation (Tγi) 7→ (ϕTγiϕ
−1) = (Tϕ(γi)) for ϕ ∈ MCG(Σ); and

2. Hurwitz moves

(Tγ1 , . . . , Tγi , Tγi+1 , . . . , Tγn) 7→ (Tγ1 , . . . , TγiTγi+1T
−1
γi
, Tγi , . . . , Tγn).

Thus, we can state the Hurwitz problem for the mapping class group, which asks if
we can understand the equivalence classes of ordered tuples (Tγi) under these actions.
Equivalently, is there a method to determine if two such tuples are related by a series
of global conjugations and Hurwitz moves?

First, we do an example to show that this problem could be tractable.

Example Consider the case where the fiber Σ is the torus, and we have two vanishing
cycles. We first note that a simple closed curve on the torus, which determines a unique
corresponding Dehn twist (Lemma 2.5), is itself determined by a pair of coprime posi-
tive integers (a, b) corresponding to the curve’s intersection numbers with the meridian
and longitude of the torus. Thus, a curve can be written as an column vector in Z2,
so a pair of curves can be written as a matrix

A =
(
a c
b d

)
∈ Mat2(Z).
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Then, since elements of MCG(T 2) = SL2(Z) act as left-multiplication on curves, their
action via global conjugation on the pair of twists is also left-multiplication on this
matrix. In addition, one can calculate the action of a Hurwitz move to be

A 7→
(
c− det{A} · a a
d− det{A} · b b

)
.

To determine the possible equivalence classes of pairs of curves under these two
actions, we first note that a matrix A with a, b coprime can be mapped to a matrix

of the form
(

1 m
0 n

)
via a left-multiplication taking (a b)T to (1 0)T. Thus, each

equivalence class corresponds to a pair (m,n).
Now, a left-multiplication preserving the first column (1 0)T must be of the form(

1 k
0 1

)
∈ SL2Z and thus map the class [(m,n)] to the class [(m+ kn, n)]. Thus, m is

determined only up to a factor of n, so we can replace m by its residue m ∈ Z/nZ.
Finally, a Hurwitz move takes the class [(m,n)] to the class [(m−1,−n)] = [(−m−1, n)],

as for k = m−1, we get mk = 1 + ni and(
k k − i
−n m− n

)(
m− n 1
n 0

)
=
(

1 k
0 −n

)
.

Thus, the desired equivalence classes in this case are characterized by pairs (m,n),
where m ∈ Z/nZ and two pairs (m,n), (k, n′) are equivalent if n = n′ and mk = −1
in Z/nZ.

We can extend this method to k > 3 vanishing cycles, with similar results at the
level of global conjugation. However, the Hurwitz moves become an action of Bk/Z(Bk)
on the resulting classes, instead of Z/2Z as they are for two vanishing cycles, making
the study more difficult. Even in the case k = 3 for the torus, the Hurwitz action makes
a huge number of classes equivalent, and we could not discern a pattern in this collapse
(though we did notice an interesting Fibonacci-like growth pattern in the binary tree
generated by the two Hurwitz moves).

We can also extend this method to surfaces of higher genus, with 2 vanishing cycles.
Here, the single Hurwitz move σ1 is an involution up to global conjugation, as noted
above:

σ2
1(Tγ , Tγ′) = σ1(TγTγ′T−1

γ , Tγ)
= (TγTγ′TγT−1

γ′ T
−1
γ , TγTγ′T

−1
γ )

= TγTγ′(Tγ , Tγ′)(TγTγ′)−1.

Thus, it suffices to classify pairs of curves up to the action of the MCG. In fact, we
give a stronger, inductive classification of k-tuples of curves up to this action, where
the base case k = 0 is trivial.

Suppose we are given two k-tuples of curves Tγi and Tγ′i . First, we check if the
initial k − 1-tuples of curves are equivalent up to action of the MCG. If not, then the
extended k-tuples are clearly not equivalent. If so, then we can assume without loss
of generality that γ′i = γi for i < k, so that we are looking at the question of whether
(Tγ1 , . . . , Tγk−1 , Tγk

) and (Tγ1 , . . . , Tγk−1 , Tγ′k) are equivalent.
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Here, we use the change-of-coordinates principle. This states that such k-tuples are
equivalent if and only if the surfaces obtained by cutting along all of the curves are
diffeomorphic, and the resulting attaching data on the boundary coincide. As the first
k − 1 curves are the same, we can pay attention only to the cut along the last curve,
which gives a small amount of boundary attaching data to keep track of.

Since both of these invariants are ultimately discrete (the first determined by the
genus and number of boundary components of each component surface obtained, the
second determined by colorings on circular graphs), this gives an algorithmic classifi-
cation of k-tuples of curves up to global conjugation.

3 Results from symplectic geometry
3.1 Boundaries

We have a number of results about Lefschetz fibrations whose fibers are surfaces Σ̄
with nontrivial boundary, using the machinery of symplectic geometry. In particular,
we state Corollary 2.21 in [Ent]:

Theorem 3.1. If a 4-dimensional manifold M with a Lefschetz fibration structure
has boundary isomorphic to that of Σ̄×D2 (with contact structures), then M must be
diffeomorphic to Σ̄×D2.

Now, recall that the boundary ∂M of such a Lefschetz fibration is determined by
the boundary monodromy Tγ1 . . . Tγn on the fiber Σ̄, given by the vanishing cycles γi.
Thus, we have the following result as a consequence.

Theorem 3.2. There is no nontrivial factorization of the identity on Σ̄ into positive
Dehn twists.

Proof. Suppose there is such a factorization idΣ̄ = Tγ1 . . . Tγn for some curves γi. Then
we can construct a Lefschetz fibration M → D2 with fiber Σ̄ and vanishing cycles γi.

Since M has trivial boundary monodromy by construction, the preceding obser-
vation gives ∂M = ∂(Σ̄ × D2). By 3.1, we conclude that M ∼= Σ̄ × D2. But by
Proposition 2.18, this implies

χ(Σ̄) + n = χ(M) = χ(Σ̄×D2) = χ(Σ̄),

so n = 0 and the factorization is trivial. �

We can obtain further results with the concept of stabilization.

Definition 3.3. The (positive) stabilization of a Lefschetz fibration with fiber Σ̄ a
surface with boundary is the Lefschetz fibration with
1. fiber Σ̄′ = Σ̄ ∪ 1-handle and
2. an additional vanishing cycle γ in Σ̄′, appended to the end of the list of vanishing

cycles, that intersects the co-core c of the 1-handle once (and thus passes through
the handle exactly once).
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Figure 6: The process of stabilizing F to F ′ (picture taken from [Zu]).

We can define a similar negative stabilization using the negative Dehn twist T−1
γ

for the new vanishing cycle γ, but this does not give a Lefschetz fibration structure on
the resulting 4-manifold.

Note that positive stabilization preserves the total space M of the Lefschetz fibra-
tion, since the additional handle in the fiber cancels with the 2-handle attached via the
additional vanishing cycle. Thus, we have the following analogue of 3.2.

Theorem 3.4. Suppose γ1, . . . , γn are curves obtained from stabilizing the surface Σ̄
n times. Then a factorization Tγ1 . . . Tγn = Tδ1 . . . Tδm must have m = n.

Proof. We can stabilize the trivial Lefschetz fibration structure on Σ̄×D2 n times to
obtain a Lefschetz fibration on Σ̄×D2 with vanishing cycles γi.

Then we construct a Lefschetz fibration M with vanishing cycles δm. This gives
two fibrations with the same boundary monodromy, so ∂M = ∂(Σ̄×D2) and 3.1 gives
M ∼= Σ̄×D2.

Since both of these manifolds are Lefschetz fibrations over the disk, with fiber
Σ̄′...′ obtained from Σ̄ after n stabilizations, a calculation of Euler characteristic using
Proposition 2.18 gives

χ(Σ̄′) +m = χ(M) = χ(Σ̄×D2) = χ(Σ̄′) + n

and m = n. �

3.2 Overtwisted structures on contact 3-manifolds
The boundary of a Lefschetz fibration is a contact 3-manifold. We call a contact

3-manifold fillable if it can be written as the boundary of some Lefschetz fibration.
All contact 3-manifolds fall into two disjoint classes, tight and overtwisted (for

details, see [El]). Moreover, we have Theorem 1.1 of [Pr]:

Theorem 3.5. Every overtwisted manifold is non-fillable.

In particular, the boundary of a Lefschetz fibration is a tight contact 3-manifold.
We also know that if we negatively stabilize a contact 3-manifold, then the 3-

manifold becomes overtwisted (remark 9.2.12 of [OS]), and it remains overtwisted even
if we positively stabilize it again. These facts combine to give the following consequence,
on mapping class group factorizations:

Theorem 3.6. Suppose that φ = φ̄T−1
δ Tγ1 . . . Tγn is the monodromy obtained, from

the surface Σ̄ with monodromy φ̄, by a negative stabilization T−1
γi

and n positive stabi-
lizations Ti. Then φ cannot be factorized into a product of positive Dehn twists.
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Proof. Let φ be constructed with at least one negative stabilization, with corresponding
contact 3-manifold N , and suppose F is a factorization of φ into a product of positive
Dehn twists. Then by Proposition 2.17, we can construct a Lefschetz fibrationM → D2

with monodromy representation given by the factors of F , which would have boundary
monodromy F = φ.

As the boundary of a Lefschetz fibration over D2 is a fiber bundle over S1, and is
thus determined by the boundary monodromy, we obtain ∂M = N , giving a symplec-
tic filling of N . But N is overtwisted, by the remark made before the proof, which
contradicts Theorem 3.5. Thus no such factorization F can exist. �

In the next few sections, we wish to shed light on the preceding results using
techniques related to the structure of the MCG, instead of the previously-referenced
techniques in symplectic geometry.

4 Investigation into planar surfaces
In the previous section, we stated three theorems about mapping class group fac-

torizations, namely theorems 3.2, 3.4, and 3.6, which come from symplectic geometry.
In this section, we will prove them for a genus 0 surface. In order that our surface
does not gain any genus, we only allow stabilizations of the disk that add boundary
components, which forms a disk with n holes Dn.

We choose Dn as a surface of study because MCG(Dn) is easy to understand: a
presentation of MCG(Dn) is given by Margalit and McCammond [MM], as follows.
Let us call a simple closed curve in Dn convex if it is isotopic to the boundary of the
convex hull of a collection of holes A, and a Dehn twist convex if it twists about such
a convex curve. We denote such a Dehn twist by TA, where A is the collection of holes
enclosed by the corresponding curve (a mild abuse of notation). Then MCG(Dn) has
a presentation with all possible TA as generators, and with the following two classes of
relations:

• Dehn twists around disjoint curves commute.
• The generalized lantern relation, which states that

TA∪B∪CTATBTC = TA∪BTB∪CTC∪A,

where A,B,C are disjoint collections of holes (see Figure 7).

From this presentation of MCG(Dn), Plamenevskaya and Van Horn-Morris [PV]
found a natural invariant on MCG(Dn), which arises from two key observations.

The first observation is that a Dehn twist enclosing many holes can be decomposed,
using the lantern relation, into Dehn twists that enclose fewer holes; for instance, we
can write

TA∪B∪C = TA∪BTB∪CTC∪ATA
−1TB

−1TC
−1

. By repeatedly applying the lantern relation, we can express any Dehn twist, or
indeed any element of MCG(Dn), as a product of Dehn twists that enclose either one
or two holes. This representation is unique once we take images in the abelianization
of MCG(Dn), written as MCGab(Dn).
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Figure 7: The curves represented on the two sides of the lantern relation.

The second observation is that the set of holes which a curve encloses determines
the orbit of the curve under the action of MCG(Dn), so since conjugacy classes are
collapsed under abelianization, the set of holes A enclosed by a Dehn twist determines
its image in MCGab(Dn).

Thus, if we label the holes inDn from 1 to n, we know from the two observations that
an element in MCGab(Dn) breaks down into mi copies of T{i} and mij copies of T{i,j}.
These invariants {mij ,mi} determine the element uniquely (so that MCGab(Dn) =
Z(n

2)).
Let us consider {mij ,mi} for specific examples of MCGab(Dn). We will call a Dehn

twist a boundary Dehn twist if it encloses a single hole, that is, it is T{i} for some i.
In this case, we observe that mk(Ti) = δik is 0 unless i = k, and mij(Tk) = 0 for all i,
j, k. For a non-boundary Dehn twist that encloses more than one hole, the result is
less obvious:

Proposition 4.1. For a positive non-boundary Dehn twist Tγ enclosing r holes, its
{mij ,mi} is given as follows:
1. mkl = 1 if holes k and l are both enclosed in Tγ, and 0 otherwise;
2. mk = −(r − 2) if the hole k is enclosed in Tγ, and 0 otherwise.

The proposition can be easily proven by induction and repeated application of the
lantern relation; for details, see [PV]. We remark that only non-boundary Dehn twists
contribute positively to mij .

In addition, Plamenevskaya and Van Horn-Morris proved a useful lemma [PV],
which we have modified to suit our purposes.

Lemma 4.2. Let φ ∈ MCG(Dn) be a product of positive Dehn twists, and suppose a
hole k is enclosed by p boundary Dehn twists and q non-boundary Dehn twists in φ.
Suppose F is a factorization of φ into positive Dehn twists. Then there are no more
that p+ q non-boundary Dehn twists in F that enclose k.

Proof. Suppose that F contains l non-boundary Dehn twists that each encloses k, then
we want to prove that l ≤ p+ q.

Consider the q non-boundary Dehn twist which are in φ and enclose k, and suppose
they enclose a1, ..., an ≥ 2 holes respectively. Suppose that F contains l non-boundary
Dehn twists that enclose k, which enclose b1, ..., bn ≥ 2 holes respectively.
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First we will calculate
∑
imik for φ and F , where i is some hole in Dn. By Propo-

sition 4.1, every pair of holes enclosed by a non-boundary Dehn twist contributes
contributes a +1 to our sum. Thus, we have∑

i

mik(φ) = (a1 − 1) + (a2 − 1) + ...+ (aq − 1).

Similarly, ∑
i

mik(F ) = (b1 − 1) + (b2 − 1) + ...+ (bl − 1),

and because F is a factorization of φ, we have∑
i

mik(φ) =
∑
i

mik(F ).

Now we calculate mk for φ and F . By Proposition 4.1, we have

mk(φ) = p− (a1 − 2)− (a2 − 2)− ...− (aq − 2),

while
mk(F ) = mk(φ) ≥ −(b1 − 2)− (b2 − 2)− ...− (bl − 2),

where the p in the first equation comes from the p boundary Dehn twists in φ, and the
inequality is because F may contain boundary Dehn twists about k, which have not
been considered and would increase mk.

Thus we have the following relations:

a1 + a2 + ...+ aq − q = b1 + b2 + ...+ bn − l, (1)
p− (a1 + a2 + ...+ aq − q) ≥ −(b1 + b2 + ...+ bn − 2l). (2)

Substituting (1) into (2), we get the desired inequality l ≤ p+ q. �

We are now ready to prove a few preliminary results:

Proposition 4.3. There is no factorization of the identity in MCG(Dn) into a positive
number of positive Dehn twists.

Note that this is a special case of Theorem 3.2, the general theorem pertaining to
factorizations of the identity. In fact, we prove the theorem by passing to MCGab(Dn)
via the abelianization map, so the theorem is true there as well.

Proof. Suppose we have some factorization F of id consisting of positive Dehn twists.
We will show that F contains no non-boundary Dehn twists, and then show it contains
no boundary Dehn twists, which completes the proof.

By Lemma 4.2 in the case p, q = 0, for any hole k there are no more than zero
non-boundary Dehn twists that enclose k. Thus F contains no non-boundary Dehn
twists.

Thus only boundary Dehn twists can contribute to {mij ,mi} of F . Recall that a
boundary Dehn twist enclosing some hole k contributes a +1 to mk. But all mi = 0
for id, so F does not contain any boundary Dehn twists either, and we are done. �
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Proposition 4.4. If we have a non-boundary Dehn twist Tγ about some simple closed
curve γ, and F is a factorization of Tγ into positive Dehn twists, then F must consist
of the single term Tγ.

Proposition 4.4 remains true if we allow Tγ to be a boundary Dehn twist; the proof
in this case is similar (and in fact simpler).

Proof. To prove this statement, we first show that F contains precisely one non-
boundary Dehn twist, and that Dehn twist encloses the same holes as Tγ . Then,
if there are remaining boundary Dehn twists in F , they will form a factorization of id
once we pass to MCGab(Dn), contradicting Proposition 4.3. This gives F consists of a
single Dehn twist, which must be Tγ by Lemma 2.5.

We consider some hole k enclosed in Tγ . By Lemma 4.2, k is enclosed by no more
than one non-boundary Dehn twist in F . Suppose k is not enclosed by any non-
boundary Dehn twists. Then mk′k(F ) = 0, for all other k′ enclosed by Tγ . However,
mk′k(Tγ) = 1 by Proposition 4.1, giving a contradiction. So k must be enclosed by one
and only one non-boundary Dehn twist in F ; we label that Dehn twists Tγ′ .

Now we show that Tγ′ encloses the same holes as Tγ . A hole l not enclosed by Tγ
cannot be enclosed by Tγ′ , since mkl = 0, so l and k cannot be enclosed by the same
non-boundary Dehn twist. Conversely, a hole k′ enclosed by Tγ is also enclosed by Tγ′ ,
since mk′k=1 for F , so k′ must be enclosed by the unique non-boundary Dehn twist
T ′γ in F enclosing k. This finishes the proof. �

Proposition 4.5. Let φ ∈ MCG(Dn) and φ = TαTβ, where Tα and Tβ are both non-
boundary Dehn twists. If F is a factorization of φ in positive Dehn twists, then F
consists only of two non-boundary Dehn twists Tα′ and Tβ′, which enclose the same
holes as Tα and Tβ respectively.

As in Proposition 4.4, Proposition 4.5 remains true if we allow boundary Dehn
twists.

Proof. We first show that F contains twists Tα′ and Tβ′ which enclose the same holes
as Tα and Tβ respectively. As in the proof of Lemma 4.4, we pass to the abelianization,
where the strenghtening of Proposition 4.3 tells us that F cannot contain further Dehn
twists, completing the proof.

We need to check four different cases, which arise from different arrangements of
Tα and Tβ. The four cases are:

1. α, β disjoint, so they enclose different sets of holes;
2. α, β each enclosing some holes that are not enclosed by the other, but the two

curves sharing some holes;
3. β containing all holes contained in α, but not vice versa;
4. α, β enclosing exactly the same holes.

Case 1: α, β disjoint. Then we can treat Tα and Tβ separately. Following the same
kind of argument found in Proposition 4.4, we can conclude that F contains the desired
Tα′ and Tβ′ .

Case 2: α, β share some but not all holes that they enclose. First we consider any
hole a which is enclosed by Tα but not by Tβ. By Lemma 4.2, a is enclosed by at
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most one non-boundary Dehn twist in F . Because mia = 1 for some i also enclosed by
Tα, we know that a must be enclosed by exactly one non-boundary Dehn twist in F ,
which we write as Tα′ . Now let us consider any other hole a′ enclosed by Tα. Because
ma′a(Tα) = 1, there must exist a non-boundary Dehn twist in F that encloses both a′
and a. But there is only one non-boundary Dehn twist that encloses a, namely Tα′ , so
we know that a′ is enclosed by Tα′ . Thus Tα′ encloses the same holes as Tα.

Similarly, by considering any hole b which is enclosed by Tβ but not Tα and using
the same arguments, we know that F contains exactly one non-boundary Dehn twist
that encloses b, which we call Tβ′ . Moreover, Tβ′ encloses the same holes as Tβ.

Case 3: All the holes of β are enclosed in α, but not conversely. First we consider
any hole a enclosed by Tα but not by Tβ. We argue as we have done for case 2 and
conclude that F contains exactly one non-boundary Dehn twist that encloses a, which
we call Tα′ , and Tα′ encloses the same holes as Tα.

Now consider some hole b that is enclosed by Tβ (so b is also enclosed by Tα). By
Proposition 4.2, b is enclosed by at most two non-boundary Dehn twists in F . Because
mb′b = 2 for any other b′ in Tβ, b must be enclosed by exactly two non-boundary Dehn
twists in F . We know b is enclosed in Tα′ already, so there must be exactly one other
non-boundary Dehn twist Tβ′ which encloses b.

We consider some other hole b′ in Tβ. Because mb′b = 2, there must exist two
non-boundary Dehn twists in F that encloses both k′ and k. But the only two non-
boundary Dehn twists that encloses b are Tα′ and Tβ′ , so b′ is enclosed by Tβ′ . Thus
Tβ′ encloses the same holes as Tβ.

Case 4: α, β enclose exactly the same holes. We consider any two holes a and a′
enclosed by both Tα and Tβ. By Proposition 4.2, a and a′ are enclosed by at most
two non-boundary Dehn twists. Because ma′a = 2, a and a′ must both be enclosed by
exactly two non-boundary Dehn twists, and they must be enclosed by the same Dehn
twists. Thus F contains exactly two non-boundary Dehn twists that enclose the same
holes as Tα and Tβ, which we denote Tα′ and Tβ′ .

We have checked all four cases and concluded that F contains Tα′ and Tβ′ , which
enclose the same holes as Tα and Tβ respectively. The remainder of F is equivalent to
id in MCGab(Dn), which is trivial according to Proposition 4.3, so we are done. �

So far, we have proven that on Dn, id and a single Dehn twist has no nontrivial
factorization, and a product of two Dehn twists has only factorizations into two Dehn
twists enclosing the same holes. It is not the case, however, that any factorization of a
product of n Dehn twists for all n must consist of n Dehn twists. A counter example is
provided by the lantern relation, TA∪B∪CTATBTC = TA∪BTB∪CTC∪A, where a product
of four Dehn twists is factorized by a product of three Dehn twists.

At the same time, by the theorem on 4-manifolds we know that the product of n
Dehn twists that arise from stabilization can only be factorized into n Dehn twists.
What, then, makes n Dehn twists which come from stabilization special, when com-
pared to arbitrary Dehn twists? The insight is provided by our earlier counterexample.
The reason the four Dehn twists could be the product of another three is that they
satisfied the lantern relation, which changes the number of positive Dehn twists in
a product. So the n Dehn twists formed from stabilization must be special because
they do not satisfy the lantern relation; indeed, if they did we would be able to find a
factorization of them with a different length. There is an intuitive way to explain the
lack of lantern relations among Dehn twists formed from stabilization: whenever we
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add a Dehn twist by stabilization, the new Dehn twist encloses a hole which no other
Dehn twist encloses; yet for some Dehn twists to satisfy the lantern relationship, the
sets of holes involved must all be enclosed by two distinct Dehn twists. We formalize
this intuition in the lemma below:

Lemma 4.6. Let φ ∈ MCG(Dn) be a product of positive Dehn twist. Say Tγk
∈ φ,

where Tγk
is the only Dehn twist in φ that enloses a hole labeled k. Then, if F is a

factorization of φ into positive Dehn twist, there exists exactly one Dehn twist in F
that encloses k, which we label Tγ̄k

. Moreover, Tγ̄k
encloses the same holes as Tγk

.

In other words, this lemma tells us that if a Dehn twist encloses some holes that no
other Dehn twists do, then it is not involved in any relations and must appear in the
factorization.

Proof. The proof is similar to our earlier proofs for factorizations of one and two Dehn
twists. We show that there is only one Dehn twist Tγ̄k

in F enclosing k; then we show
Tγ̄k

encloses the same holes as Tγk
. We will check two separate cases: when Tγk

is a
boundary Dehn twist, and when it is a non-boundary Dehn twist.

First, we assume Tγk
is a boundary Dehn twist. By Lemma 4.2, we know that

F contains no non-boundary Dehn twist that encloses k. Because mk = 1, F must
contain exactly one boundary Dehn twist that encloses k, and that boundary Dehn
twist satisfies the desired properties of Tγ̄k

, so we are done.
The other possibility is when Tγk

is a non-boundary Dehn twist. By Lemma 4.2,
we know that F contains at most one non-boundary Dehn twist that encloses k. As-
sume the F contains zero non-boundary Dehn twists that encloses k, so all mkj = 0.
However, Tγk

is a non-boundary Dehn twist, so we must have some mkj = 1, where
j is also enclosed by Tγk

, which gives a contradiction. Thus F contains exactly one
non-boundary Dehn twist that encloses k, and we will label it Tγ̄k

. We want to show
that Tγ̄k

encloses the same holes as Tγk
. Consider any other hole j. If j is not enclosed

by Tγk
, then mkj = 0, so j is not enclosed by Tγ̄k

either. If j is enclosed by Tγk
, then

mkj = 1, which means there is some non-boundary Dehn twist in F that encloses both
k and j. But Tγ̄k

is the only non-boundary Dehn twist in F that encloses k, so Tγ̄k
also

encloses j. Thus Tγ̄k
encloses the same holes as Tγk

. By checking mk, we can show that
there is no boundary Dehn twist in F that encloses k, which implies that Tγ̄k

satisfies
the desired properties, and we are done. �

Before presenting our proof of the theorem about stabilizing Dn, we remind the
reader of the stabilization process. We will begin with D and φ0 = id as the boundary
monodromy. We only allow stabilizations that do not form any genus. After stabilizing
once, our surface is extended to T1, and the monodromy becomes φ1 = Tγ1 , where Tγ1

encloses hole 1. After stabilizing n times, we obtain the surface Dn, with monodromy
φn = Tγ1Tγ2 ...Tγn (see Figure ??).

Theorem 4.7. Let φn ∈ MCG(Dn) be a product of Dehn twists that arise from stabiliz-
ing D n-times, so φn = Tγ1Tγ2 ...Tγn. Say φn is a factorization of φn into positive Dehn
twists. Then φn consists of the n Dehn twists Tγ̄1, Tγ̄2, ..., Tγ̄n, where Tγ̄i encloses the
same holes as Tγi.

Proof. We will prove the theorem by induction. Begin with base case n = 0. Then our
surface is D, and the monodromy is φ0 = id. Because MCG(D) is trivial, the theorem
is obviously true.

18



Figure 8: The figure shows Dn with φn formed by stabilizing (D,id) n times, as well as γ1,
γ2 and γn. An important point to bear in mind is that γn is the only curve that encloses
hole n.

Then we consider the inductive case, so we assume the theorem is true from n ≤
k − 1. Let us consider the surface Tk−1 with monodromy φk−1 = Tγ1Tγ2 ...Tγk−1 . We
stabilize the surface, forming Tk with monodromy φk = Tγ1Tγ2 ...Tγk−1Tγk

. Now notice,
by the nature of the stabilization process, that Tγk

is the only Dehn twist among all
the Tγi that encloses the hole k. Thus, by Lemma 4.6, we know that if we have a
factorization φk of φk in positive Dehn twists, then φk = φk−1Tγ̄k

, where Tγ̄k
is the

only Dehn twist in φk that encloses hole k, and Tγ̄k
encloses the same holes as Tγk

. As a
result, Tγ̄k

has the same set of {mij ,mi} as Tγk
, and φk−1 has the same set of {mij ,mi}

as φk−1, so φk−1 must be a factorization of φk−1. By our induction hypothesis, φk−1
contains the k − 1 Dehn twists Tγ̄1 , Tγ̄2 , ..., Tγ̄k−1 . Because φk = φk−1Tγ̄k

, φk contains
the k Dehn twists Tγ̄1 , Tγ̄2 , ..., Tγ̄k

as desired, and our proof is complete. �

To summarize, the product of Dehn twists formed by stabilization have to be fac-
torized into the same number of Dehn twists, because the product satisfies no relation
which changes the length of its factorization. For Dn, we were able to formalize this
idea with the invariant given by Plamenevskaya and Van Horn-Morris (cite). Moreover,
we worked in Ab(MCG(Dn)), which motivated us to consider abelianizations of other
mapping class groups and their connections with the general stabilization property.

The idea of Theorem 4.7 is also useful in proving theorem 3.6 in the case of Dn.
Here we want to begin with Dn with monodromy some arbitrary φ̄ ∈ MCG(Dn). We
have:

Theorem 4.8. Let φn+m+1 ∈ MCG(Dn+m+1) be a product of Dehn twists that arise
from stabilizing Dn with monodromy being an arbitrary φn ∈ MCG(Dn) with one neg-
ative stabilization T−1

δ and m positive stabilizations, so φn+m+1 = φnT
−1
δ Tγ1 ...Tγm.

Then φn+m+1 cannot be factorized into a product of positive Dehn twists.

Proof. We will prove the theorem by contradiction, so we assume there exists a φn+m+1,
which is a factorization of φn+m+1 into positive Dehn twists. We know that φn+m+1 =
φn+1Tγi+1...Tγm , where φn+1 = φnT

−1
δ . Thus φn+m+1 must consist of φn+1, Tγ̄1 , ...,

Tγ̄m , where φn+1 is a factorization of φn+1 into positive Dehn twists, and Tγ̄j encloses
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the same holes as Tγj (the argument is essentially the same as the inductive argument
used to prove theorem 4.7: apply lemma 4.6 repeatedly). Because φn+1 consists only of
positive Dehn twists, all mji of φn+1 must be non-negative. However, because T−1

δ is
the only (negative) Dehn twist in φi that encloses some hole i, we know that mji = −1,
for any other hole j enclosed by T−1

δ . Thus we have a contradiction and the proof is
complete. �

5 Abelianization of the mapping class group
Now we consider a surface Σg,n of genus g ≥ 1 with n ≥ 0 boundary components,

and ask for the abelianization of its mapping class groupMg,n. As we saw in the last
section, this approach was fruitful for g = 0, and we hope that we can obtain similar
results for general surfaces with the same method. However, this hope is not realized:

Theorem 5.1. We have

Mab
g,n =


Z/12Z g = 1, n = 0
Zn g = 1, n > 0
Z/10Z g = 2
0 g ≥ 3.

Proof. We consider the structure of the mapping class group, in particular the presen-
tation given by Gervais [Ger].

The surface Σg,n can be constructed by taking a torus with 2(g − 1) + n holes Si
and attaching g − 1 handles Hk connecting the first g − 1 pairs of holes.

Figure 9: Curves on a surface Σg,n, constructed as in [Ger] (source for picture).

According to Gervais,Mg,n is generated by the following elements:
• the twist b around the torus longitude β;
• the twists ai around the torus latitudes αi between consecutive holes Si and Si+1;
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• the twists bk around longitudinal curves βk through the attached handles Hk;
• the twists cij around curves γij on the torus that enclose the holes between αi

and αj .
The relations are:
• handle relations c(2i−1)2i = c2i(2i+1);
• disjointness relations xy = yx for x, y generators around disjoint curves;
• braid relations xyx = yxy for x, y generators around curves that intersect once;
• star relations cijcjkcki = (aiajakb)3 for i ≤ j ≤ k not all equal.
Now we pass to the abelianizationMab

g,n, retaining the above sets of generators and
relations, but making some simplifications using commutativity and casework.

In the abelianization, the disjointness relations become trivial, and the braid rela-
tions reduce to a certain set of equalities: ai = b, bk = a2k = b, and cij = bl = b if
there exists l ∈ {i, j} with l ∈ {2, . . . , 2(g − 1)}, i.e. αl goes through a handle. This
eliminates the generators ai and bk, and further restrains the cij (subsuming the handle
relation, in fact).

The star relation then becomes

cij + cjk + cki = 3(ai + aj + ak + b) = 12b.

In the case g = 1, n = 0, this last relation reduces to 12b = 0 and we conclude
Mab

1,0 = Z/12Z.
For all other pairs (g, n), we can split this class of relations into two subsets. The

first, where j ∈ {i, k}, gives
cki = 12b− cik

for all i < k. The second gives cij + cjk = cik for all i < j < k, which reduces to

ci(i+1) + . . .+ c(k−1)k = cik (?)

or all i < k. This reduces the generating set to b, ci(i+1), with relations

cik = ci(i+1) + . . .+ c(k−1)k = b

and
cki = 12b− (ci(i+1) + . . .+ c(k−1)k) = b

for i < k, one of which lies in {2, . . . , 2(g − 1)}.
If g = 1, all of these relations are vacuous, so we concludeMab

1,n = Zn for n > 1.
If g ≥ 2, the second relation reduces to 10b = 0 via the first relation. If g = 2, then

the first relation gives c12 = b and c23 + . . . + c(k−1)k = b for all k > 2, which reduces
to c23 = b and c(k−1)k = 0 for all k > 3. ThusMab

2,n = Z/10Z.
For g ≥ 3, the first relation again gives c(i−1)i = b directly for all 2 ≤ i ≤ 2g − 1,

while c(2g−2)(2g−1) + . . . + c(k−1)k = b for all k > 2g − 2 gives c(k−1)k = 0 for all
k > 2g − 1, reducing the generating set to b. In this case, we have additional relations
2b = c23 + c34 = b giving b = 0. We concludeMab

g,n = 0 for g ≥ 3. This completes the
proof. �
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However, there is one case where we do obtain some information from Theorem 5.1,
namely the case g = 1, where we can prove the following proposition (a special case of
Theorem 3.2).

Proposition 5.2. There is no factorization of the identity into positive Dehn twists
on the torus with n > 0 boundary components.

First, we state a few preliminary lemmas. Let β ⊂ S be the nonseparating simple
closed curve about the latitude of the torus, and let α ⊂ S be any nonseparating
simple closed curve. Cutting along α gives an annulus with n boundary components,
and similarly for β. Thus, using the change-of-coordinates principle from [FM], we
have:

Lemma 5.3. There exists a homeomorphism φ ∈ Homeo(S, ∂S) with φ(α) = β.

This lemma implies that such Tα and Tβ are conjugate in the MCG via φ, so that
their images are equal in the abelianization.

Now suppose α is a separating simple closed curve. Cutting along α gives a de-
composition S\α = S1 t S2. Let gi be the genus for Si and let ni be the number of
boundaries/punctures on Si =⇒ n1 + n2 = n + 2. Note that χ(S) = χ(S1) + χ(S2)
gives −n = (2 − 2g1 − n1) + (2 − 2g2 − n2) = 4 − 2(g1 + g2) − n − 2, so g1 + g2 = 1.
Thus, without loss of generality, we may assume that g1 = 0 and g2 = 1.

Let γ be any other separating simple closed curve with decomposition S\γ = S′1tS′2
such that S′1 contains the same boundary components as S1. Then, again using the
change-of-coordinates principle, we have:

Lemma 5.4. There exists a homeomorphism φ ∈ Homeo(S, ∂S) with φ(α) = γ.

For any A ⊂ {1, ..., n} let γA be a choice of simple closed curve enclosing boundary
components Ci for i ∈ A. We have thus shown that if a nonseparating curve α encloses
boundary components Ci for i ∈ A ⊂ {1, ..., n} then Tα = TγA . Using equation (?) in
the proof of Theorem 5.1, we obtain:

Lemma 5.5. In the abelianization of the mapping class group,

TγA =
∑
i∈A

Tγi .

With these lemmas, we are now ready to prove the proposition.

Proof. Note that MCGab(S) = 〈b, ci|12b =
∑
i≤n ci〉 = Zn. Suppose that id =

∏
Tγ ;

then, passing to MCGab, we obtain∑
Tγ = m0b+

∑
i≤n

mici = 0,

where the mi are some nonnegative integers. But cn = 12b−
∑
i<n ci, so we obtain

(m0 + 12mn)b+
∑
i<n

(mi −mn)ci = 0.

Since {b, ci|i < n} form a basis for the abelian group MCGab, we concludem0+12mn =
0 and mi = mn. But m0 and mn are nonnegative, so we must have mi = 0 for all i,
and the original product of Dehn twists must have been trivial, finishing the proof. �
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6 Hyperbolic proof of symplectic results
Throughout we will use Σ to denote a surface with ∂Σ 6= ∅. We will say that an

arc α ⊂ Σ is essential if it is not isotopic (rel endpoints) to an arc α′ ⊂ ∂Σ, i.e. if it is
not isotopic to an arc contained in a boundary component.

6.1 Preliminary results
Many of the notations, definitions, and claims in this section are taken directly from

[Hon].
Let α, β ⊂ Σ be essential arcs with α(0) = β(0) = x0 ∈ ∂Σ. Consider lifts α̃, β̃ of

α, β respectively in the universal cover p : Σ̃ � Σ with α̃(0) = β̃(0) = x̃0. Note that
the interior of Σ̃ is homeomorphic to the interior of a disk and α̃ divides it into left and
right regions, determined by the orientation of α. See Figure 11b for an example – the
vertical arc corresponds to a lift that divides the universal cover into two regions.

Definition 6.1. Given essential arcs α, β ⊂ Σ with α(0) = β(0) = x0 ∈ ∂Σ and lifts
α̃, β̃ ⊂ H satisfying α̃(0) = β̃(0) = x̃0, we say β lies to the right of α if β̃(1) lies in the
region to the right of α̃. We will denote this as β ≥ α. We say β lies strictly to the
right of α if β̃(1) lies in the region to the right of α̃ and does not coincide with α̃(1).
We will denote this by β > α.

Proposition 6.2. The previous definition is well-defined up to isotopies fixing ∂Σ.

Proof. Suppose an essential arc γ′ is isotopic to γ relative to ∂Σ. Then γ′(1) = γ(1) =
z =⇒ γ, γ′ differ by an element in π1(Σ, z). However, they are homotopic, so we must
have γ̃(1) = γ̃′(1). Since endpoints of lifts of arcs in the cover do not change under
isotopies in Σ, we conclude that the definition is well-defined. �

Definition 6.3. A diffeomorphism f ∈ Diffeo+(Σ, ∂Σ) is right veering if f(α) ≥ α for
every essential arc α ⊂ Σ. We denote this subset V eer(Σ).

Claim 6.4. V eer(Σ) is a monoid under composition.

Let Dehn+(Σ) denote the monoid generated by positive Dehn twists in MCG(Σ).
We have the following lemma.

Lemma 6.5 ([Hon]). Dehn+(Σ, ∂Σ) ⊂ V eer(Σ, ∂Σ)

We remark that elementary proofs of these results can be found in [Hon].

Suppose χ(Σ) ≤ 0. We endow Σ with a Riemannian metric such that the boundary
components are geodesics. Let φ ∈ Diffeo+(Σ, ∂Σ) and let C ⊂ ∂Σ be a boundary
component containing a point x0. Let x̃0 ∈ C̃ be a lift of x0 ∈ C in the metric
universal cover. As a corollary of the pathlifting property we get a lift diffeomorphism
φ̃ ∈ Aut(Σ̃) such that φ̃(z) = z for every z ∈ C̃. When φ = Tγ is a Dehn twist about
some simple closed geodesic γ ⊂ Σ, we can visualize the lift T̃γ as follows: choose a
geodesic path α and a lift α̃ based at x̃0, follow α̃ until the first intersection with a
lift γ̃, turn right and follow γ̃ until the first intersection with a lift α̃′, make a left and
repeat until we reach the end of α. This process is illustrated as the pink curve in
Figure 10 for the annulus and in Figure 11b for Σ with χ(Σ) < 0.
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Figure 10: A lift of a Dehn twist in the annulus.
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(a) (b)

Figure 11: Proof of Lemma 6.6

We remark that when χ(Σ) < 0, the universal cover is a subset Σ̃ ⊂ H of the
Poincaré disc p : Σ̃→ Σ as shown in Figure 11b. Let L = p−1(∂Σ), which is a union of
disjoint open intervals. Given an essential arc α ⊂ Σ with α(0) = x0 ∈ ∂Σ, let α̃ be a
lift based at x̃0. We remark that α̃(0) and α̃(1) lie on different components of L since
otherwise α would be homotopic to a non-essential arc. We will use the notation Lα
to denote the connected component that contains α̃(1).

The main tool we will use is the following lemma, whose ideas were adapted from
[Sm].

Lemma 6.6. Let Σ be a surface with χ(Σ) < 0. Let α ⊂ Σ be an essential geodesic arc
based at x0 ∈ ∂Σ with lift α̃ based at x̃0, and let γ ⊂ Σ be a simple closed curve with
i(γ, α) 6= 0. Then Tγ(α) > α. Furthermore, the lift T̃γ maps the connected component
Lα to a connected component on the right of Lα.

Proof. We first show that Tγ(α) > α. Let C0, C1 be the connected boundary compo-
nents of α(0), α(1) respectively. Let C̃0, C̃1 be lifts of C0, C1 with α̃(0) = x̃0 ∈ C̃0 and
α̃(1) ∈ C̃1.

Let β be a curve in the isotopy class of Tγ(α) obtained by performing surgery α at
each intersection with γ. By Proposition 6.2, all lifts of curves in the isotopy class of
Tγ(α) based at x̃0 share the endpoint β̃(1), so it suffices to consider this representative.

The lift β̃ then corresponds to the path that follows α̃ until intersecting a lift γ̃,
following γ̃ into the right region, turning left at the next intersection with a lift of α,
and continuing in this fashion until the path ends. More explicitly, the intersection
points in γ ∩ α partition α into finitely many segments {αi}n+1

i=1 , where n = i(α, γ).
Then we can write β̃ = α̂1 ∗ γ̂1 ∗ · · · γ̂n ∗ α̂n+1, where α̂i corresponds to the lift of αi
along the zig-zag, and γ̂i are lifts of a single loop around γi corresponding to the right
turns in the zig zag. This process is illustrated as the pink curve in Figure 10 and
Figure 11.
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Let α̃i be the complete geodesic arc associated to α̃i, and let Ri denote the region
to the right of α̃i. We claim that α̃i+1 ⊂ Ri for every i. First note that γ̂i ⊂ Ri =⇒
α̂i+1(0) = α̃i+1 ∩ γ̃i ∈ Ri. Suppose i(α̃i, α̃i+1) 6= 0 as in Figure 11a. The surgery
procedure on geodesics ensures that the angles indicated in the figure are congruent.
Thus the geodesic triangle formed by α̃i, α̃i+1, γ̃i has angle sum greater than π which
is a contradiction.

Next, observe that α̃i and α̃i+1 cannot share an endpoint on C̃1 because this would
violate both the local homemorphism property of covering spaces and the angle deficit
property of hyperbolic triangles.

Thus, by induction we have that α̃n+1 ⊂ R1, and specifically β̃(1) lies strictly to
the right of α̃(1) =⇒ Tγ(α) > α.

We now show that all of C̃1 gets mapped strictly to the right. Let z ∈ C̃1 and let α̃
be a geodesic arc from x̃0 to z. Define β̃ as above. Suppose β̃(1) ∈ C̃1. Then, because
the angles indicated in Figure 11b are equal, summing the complementary angles in
the geodesic quadrilateral formed by γ̃n, α̃n, α̃n+ 1, and C̃1 yields an angle sum of
2π which is a contradiction. Using what we proved above, we see that T̃γ(z) must
get mapped to a connected component strictly to the right of C̃1. Because T̃γ(z) is
continuous, we see that all of C̃1 gets mapped to the same connected component to
the right. �

6.2 No factorization of the identity
In this section we will prove the following theorem using hyperbolic methods.

Theorem 6.7. There is no nontrivial factorization of id ∈ MCG(Σ) into positive
Dehn twists.

Proof. The cases Σ = D and Σ = A (i.e. when χ(Σ) ≥ 0) were covered in the planar
section. This leaves the case when χ(Σ) < 0. Suppose for contradiction that there
exists a positive factorization id =

∏n
i=1 Tγi . Choose an essential arc α such that

i(α, γn) 6= 0. Then by Lemma 6.6 we have that Tγn(α) > α, i.e. the twist about γn
moves α strictly to the right. By Lemma 6.5 we see that id =

∏n
i=1 Tγi moves α strictly

to the right, which is a contradiction. �

6.3 Factorizations of handle extensions
We first prove a stronger version of the theorem covered in Section 3 that there are

no factorizations of a negatively stabilized diffeomorphism into positive Dehn twists.

Theorem 6.8. Let φ ∈ MCG(Σ) and let φ̄ = φ ◦ T−1
γ ∈ MCG(Σ̄) be a negative

stabilization. Then φ̄ is not right-veering. In particular, φ̄ /∈ Dehn+(Σ̄).

Proof. First suppose Σ = D =⇒ MCG(Σ) = id =⇒ φ = id. Then negative
stabilization yields φ̄ = T−1

γ , where γ is the simple closed curve about the core of the
annulus. This is clearly not right-veering (see Figure 10).

Now let χ(Σ) ≤ 0. Suppose for contradiction that φ̄ = φ◦T−1
γ ∈ V eer(Σ̄). Let c be

the cocore of the handle that was attached via stabilization (see Figure 12). Observe
that c is an essential arc in Σ̄ and that i(c, γ) 6= 0. By Lemma 6.6 we see that Tγ(c) >
c =⇒ φ(c) = φ̄ ◦ Tγ(c) > c by Lemma 6.5. However, φ ∈ MCG(Σ) =⇒ φ(c) = c,
which is a contradiction. �
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Figure 12: Attaching 1-handles to Σ

Now suppose that instead of negatively stabilizing, we add a 1-handle h with cocore
c and extend φ by the identity, i.e. φ̄ = φ ∪ idh (see Figure 12).

Theorem 6.9. If φ̄ =
∏n
i=1 Tγi then i(γi, c) = 0.

Proof. Again, we note that c is essential. Suppose there exists a γi such that i(c, γi) 6= 0.
Let Tγk

be the first Dehn twist (in order of composition) in the product that satisfies
i(c, γk) 6= 0. By Lemma 6.6 we see that Tγk

(c) > c =⇒ φ̄(c) > c. However, by
definition we had φ̄ acting trivially on c since it was extended by the identity which is
a contradiction. �
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