Preliminary Review Problems

Math 130 Kovitz

1. (a) Divide 4 by
$$-1/4$$
.

(b) Simplify
$$8 \div \frac{1}{3} + \frac{2}{3}$$
.

2. Subtract.
$$(5x^2 - 8x + 1) - (8x^2 - 2x + 6)$$

3. Multiply.
$$-3a^2(a^2 - 4a + 5)$$

4. Multiply:

(a)
$$(6x-1)(2x+5)$$
.

(b)
$$(2a-7)^2-30$$
.

(c)
$$3(x-1/4)^2+2$$
.

5. Divide.
$$\frac{72x^3 - 32x^2 + 8x}{8x}$$

(a)
$$3x^2 - 75$$

(b)
$$9x^2 - 30x + 25$$

(c)
$$x^2 + x - 12$$

(d)
$$12x^2 - 17x - 40$$

7. True or false?

(a)
$$(-2)(-3) = -(2)(3)$$

(b)
$$\frac{-5}{-6} = -\left(\frac{5}{6}\right)$$

8. (a) Simplify this expression so that it stays in factored form without a leading minus sign.

$$-\left[(2-\sqrt{2})(3-\sqrt{3})\right]$$

(b) Solve for x.

$$-x = \frac{\sqrt{6} - \sqrt{3}}{\sqrt{2} - \sqrt{5}}.$$

9. Simplify.

(a)
$$\frac{ab - b^2}{5ab - 5a^2}$$

(b)
$$\frac{x-1}{x^2+4} \div \frac{x^2-1}{x+2} + \frac{1}{x+1}$$

(c)
$$\frac{2x+y}{x+2y} + \frac{x+5y}{x+2y}$$

(d)
$$\frac{x}{x-3} - \frac{x-7}{x-1} - \frac{1}{2}$$

(e)
$$\frac{a^2-5}{a-b} + \frac{b^2-5}{b-a}$$

(f)
$$1 + \frac{1}{\frac{1}{x} + \frac{1}{3}}$$

(g)
$$\frac{2}{3-x} - \frac{5}{3+x}$$

10. Solve for x.

(a)
$$\frac{2}{7} + \frac{6}{x-1} = \frac{x}{21}$$
.

(b)
$$\frac{20}{x} + \frac{15}{x-7} = 7.$$

(c)
$$\frac{1}{\frac{1}{x} + \frac{1}{3}} = 7$$
.

(d)
$$\frac{1}{\frac{1}{x} + \frac{1}{3}} = \frac{1}{7}$$
.

Is this answer just the reciprocal of the previous answer?

- 11. Solve for x. 2x + 5(x 7) = 59 (3x + 1).
- 12. Solve for d. $A = \frac{1}{2}h(c d)$.
- 13. Solve for x. (real number solutions only)

(a)
$$2x^2 - 14x = 0$$

(b)
$$x^2 - 22x = 11$$

(c)
$$x^2 - 5x - 84 = 0$$

(d)
$$x^2 + x - 1 = 0$$

(e)
$$x^2 - x + 1 = 0$$

(f)
$$5x^2 - x - 4 = 0$$

(g)
$$3x^2 - x + \frac{1}{12} = 0$$
.

(h)
$$3x^2 - x + \frac{1}{16} = 0$$
.

(i)
$$\left(x - \frac{1}{8}\right)^2 = \left(2\frac{1}{8}\right)^2$$
.

(here $2\frac{1}{8}$ is a mixed number and could also be written as 2.125 or $\frac{17}{8}$.)

(j)
$$(x - 4139)^2 = 161^2$$
.

- 14. Simplify, if you can: $\sqrt{a^2 + b^2}$.
- 15. For this problem, assume that $|a| \le 1$, making $1 a^2$ nonnegative.

Find an alternate expression that is equivalent to $\sqrt{1-a^2}$.

Which is simpler: the original expression, $\sqrt{1-a^2}$, or your answer?

Answer: it depends.

Try letting a=0.5376. Which is easier for you to evaluate on a calculator? Find the result with 0.5376 substituted for a.

Try letting a = 336/625. Which is easier for you to evaluate withour a calculator? Find the result with 336/625 substituted for a.

Try letting a=-7/25. Which is easier for you to evaluate without a calulator? Find the result with -7/25 substituted for a.

16. Solve for x. (This problem is optional review. It is needed for calculus but will not be reviewed in this course.)

(a)
$$\sqrt{2x+3} = 3$$

(b)
$$|x-3|=8$$

(c)
$$2 \ge |x - 7|$$

(d)
$$x^3 - 3x^2 \ge 10x$$

(e)
$$\frac{x-3}{x^2-4} \ge 0$$

(f)
$$|x+1| \ge |x-1|$$