## Scientific Notation and Related Ideas

(Basic Algebra Review) Math 130 Kovitz

## Decide whether each of Problems 1 to 22 is true or false. Assume m and n are integers.

- 1.  $a \times 10^{-n}$  will have n leading zeros after the decimal point in the case when -n is negative.
- 2.  $a \times 10^m$  has m+1 digits before the decimal point when m is non-negative.
- 3. The scientific notation of 1 is  $1 \times 10^0$ ; the scientific notation for a real number that is greater than or equal to 1 will be  $a \times 10^n$  with  $n \ge 0$ ; and the scientific notation for a real number that is less than 1 will be  $a \times 10^n$  with n < 0 (n negative).
- 4. A real number r with  $1 \le r < 10$  is represented in scientific notation as  $r \times 10^0$ .
- 5. Some real numbers have two different representations in scientific notation, i.e.  $a \times 10^n$  and  $b \times 10^m$  with either  $a \neq b$  or  $n \neq m$ .
- 6.  $0 = 0.0 \times 10^0$  is the scientific notation of zero.
- 7. Multiplying  $6 \times 10^4$  by  $2 \times 10^{11}$  yields  $1.2 \times 10^{16}$ .
- 8. Finding  $\frac{1}{2}$  of  $6.4 \times 10^9$  is correctly accomplished by observing that  $.5 \times 10^{-1}$  times  $6.4 \times 10^9$  equals  $3.2 \times 10^8$ .
- 9. To multiply a number  $a \times 10^n$  that is in scientific notation by a simple fraction, it is permissible to simply multiply a by that fraction; and an example is that  $\frac{1}{8}$  of  $9.6 \times 10^{-3}$  should equal  $1.2 \times 10^{-3}$ .
- 10.  $2 \times 10^{-7} + (2 \times 10^{-7}) \times (5 \times 10^{3}) = (4 \times 10^{-7})(5 \times 10^{3}).$
- 11.  $2 \times 10^{-7} + (2 \times 10^{-7}) \times (5 \times 10^3) = (2 \times 10^{-7})(5.01 \times 10^3)$ .
- 12.  $\frac{6 \times 10^{-5}}{8 \times 10^{-3}} = 7.5 \times 10^{-2}$ .
- 13. A proper solution for the reciprocal of  $a \times 10^n$  is  $\frac{1}{a \times 10^n} = \frac{10}{a} \times 10^{-n-1} = \frac{10}{a} \times 10^{-(n+1)}$ .
- 14. The reciprocal of  $\frac{4}{3} \times 10^{-2}$  in scientific notation is  $0.75 \times 10^{2}$ .
- 15. The reciprocal of  $\frac{8}{7} \times 10^0$  in scientific notation is  $8.75 \times 10^{-1}$ .
- 16.  $(7 \times 10^{-2})^2 = 4.9 \times 10^{-3}$ .
- 17. The square root of  $1.6 \times 10^{-11}$  in scientific notation is  $4 \times 10^{-5}$ .
- 18.  $\sqrt{10^n} = 10^{\sqrt{n}}$  for all integers n greater than or equal to 0.
- 19. In general, the square root of  $a \times 10^{2n}$  with n an integer is  $\sqrt{a} \times 10^n$ , and the equare root of  $a \times 10^{2n+1}$  with n an integer is  $\sqrt{10a} \times 10^n$ .
- 20. Adding  $4.2 \times 10^3$  and  $6.1 \times 10^3$  gives  $1.03 \times 10^4$ .
- 21. Adding  $4.2 \times 10^{-4}$  and  $5.3 \times 10^{-6}$  gives  $4.253 \times 10^{-4}$ .
- 22.  $(1.801 \times 10^4) 1 = 1.8009 \times 10^4$ .

## Problems 23 and 24 follow.

- 23. Using scientific notation whenever helpful, show that the square of  $a \times 10^{-n}$  (assuming -n < 0) must be less than  $a \times 10^{-n}$  itself. For this example, assume that  $a \times 10^{-n}$  is in scientific notation.
- 24. Using scientific notation when advisable, find  $\sqrt{1-r^2}$  when  $r=\frac{7}{25}$ . Do not use a calculator for this problem.

Answers follow.

## Answers



24. 
$$r = \frac{14}{5} \times 10^{-1}$$

$$r^2 = \frac{196}{25} \times 10^{-2}$$

$$r^2 = \frac{196}{2500}$$

$$1 - r^2 = \frac{2304}{2500}$$

$$\sqrt{1-r^2} = \frac{\sqrt{2304}}{\sqrt{2500}} = \frac{\sqrt{4}\sqrt{576}}{50} = \frac{\sqrt{576}}{25} = \frac{\sqrt{4}\sqrt{144}}{25} = \frac{2(12)}{25} = \frac{24}{25}.$$