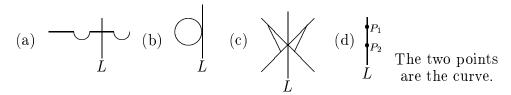

Reflection and Symmetry Problems

Math 130 Kovitz


1. Draw the reflected point across L or through O.

2. Draw the reflected curve across the line L or through the point O.

3. Indicate whether the curve is symmetric across L. (yes or no)

4. Indicate whether the curve is symmetric through O.

TURN OVER

- 5. Let P be the point (2,3).
 - (a) Find its reflection
 - i. across the line y = x.
 - ii. through the origin.
 - (b) Plot the two answers, labeling each point with its coordinates and with the name of the reflection of *P* that led to that point.
- 6. (a) Graph $y = \frac{1}{x^2}$.
 - (b) Find an equation of the reflection of that graph across the x-axis.
- 7. Find and prove one symmetry of the curve x + y = 8.
- 8. What symmetries apply to the graph of
 - (a) $x^2 + y = 5$
 - (b) $x^2 + 6y^8 = 11$
 - (c) $8x^2 + y^2 = -4$
- 9. Consider the curve defined by the equation

$$x = y^2 + 5$$

- (a) Given that y = 3, find a point on the curve.
- (b) List the four new points obtained by the four usual reflections of this point.
- (c) Which of these four points obtained from the four usual reflections are on the graph of the equation?
- (d) What conclusions can you draw about any of the four usual symmetries of the *curve*? Be careful.
- (e) Find and prove a symmetry of $x = y^2 + 5$. (Suggestion: use the reflection from equation method—that is, show that the (new) equation of the reflection obtained by the replacement rule for that symmetry is equivalent to the original equation.)