Function Practice

Math 130 Kovitz Spring 2015

- 1. For each example: Decide whether the relation depicted is a function. If it turns out to be a function find f(1/3).
 - The line x = 3.
 - The relation defined by the equation $y^2 = 9$.
 - The relation defined by the equation y = 1/x.
 - The relation defined by the equation |x| = |y|. (What is its graph?)
 - A relation whose graph is a semicircle.
 - The relation defined over the positive integers greater than or equal to 10 that yields the second digit.
 - The relation defined over all real numbers that relates the number to its closest integer or integers. (What is y when: x = 3.2? x = 6.5?)
- 2. Give an example of an equation in closed form that does not represent a function.
- 3. May the x-axis be considered a function of x?

If so: What is its equation? What is f(x)? What is f(1/3)?

- 4. Will two functions be equal (the same function) if they have:
 - (a) exactly the same graph?
 - (b) the same solution set?
 - (c) different domains but the same formula?
 - (d) the same domain and formulas that turn out to be equivalent over that domain?
- 5. Why is its unnecessary to specify the domain when a relation is defined by its solution set or by its graph?
- 6. For each example: decide whether the two functions are the same function.
 - $f(x) = \frac{x^2}{x}$ and g(x) = x.
 - $f(x) = \sqrt{x^2 22x + 121}$ and g(x) = x 11.
 - The function defined by the formula $y = \frac{1}{x^2}$ and the function defined by the formula $x = \pm \frac{1}{\sqrt{y}}$.
 - The function $y = x^2$ defined when $x \ge y$ and the function $y = x^2$ on the domain [0, 1].
 - y = x and $y = (\sqrt{x})^2$, each over its maximum domain, considering the real numbers only.
- 7. Consider the functions $f(x) = (x-1)^3$ and g(x) = x-1, each defined only over the domain $\{0,1,2\}$.

Do they have same fomula? Do they have the same domain? Are they the same function? Why?