$\begin{array}{c} \textbf{Difference Quotient Practice} \\ \text{\tiny Math~130~\textit{Kovitz}} \end{array}$

For early tests, problems 1 to 5 are necessary.

For the final exam, all 9 will be considered.

If planning to continue in Math 140 or Math 145, once you can do problems 1 to 5 correctly and smoothly, practice the rest either alone, with your study buddy, or with our FSG tutor.

1. Let the f be function with the rule $f(x) = x^2 - x + 1$.

Find
$$\frac{f(x+h)-f(x)}{h}$$
.

2. Let the f be function with the rule $f(x) = 17x^2 - 13x$.

Find
$$\frac{f(x+h)-f(x)}{h}$$
.

3. Let the f be function with the rule $f(t) = -16t^2 + 9t + 10$.

Find
$$\frac{f(t+h)-f(t)}{h}$$
.

4. Let the g be function with the rule $g(x) = 3x^2 - 5x + 1$.

Find
$$\frac{g(2+h)-g(2)}{h}.$$

5. Let the h be function with the rule $h(x) = 7x^2 - 11x + 3$.

(a) Find
$$\frac{h(x+\frac{1}{2})-h(x)}{1/2}$$
.

(b) Find
$$\frac{h(x+0.01)-h(x)}{0.01}$$
.

6. Let the f be function with the rule $f(x) = \frac{1}{x}$.

Find and simplify
$$\frac{f(x+h)-f(x)}{h}$$
.

7. Let the g be function with the rule $g(x) = \sqrt{x}$.

Find
$$\frac{g(x+h)-g(x)}{h}$$

Then rationalize the numerator and simplify to a single fraction with 1 in the numerator.

8. Let the g be function with the rule $g(x) = \frac{1}{x+2}$.

Find and simplify to a single fraction:
$$\frac{g(a+4)-g(a)}{4}$$
.

9. Let the f be function with the rule $f(x) = 3(x-4)^2 - 11$.

Find
$$\frac{f(a+h)-f(a)}{h}$$
.

Answers below

Answers

1.
$$2x - 1 + h$$

2.
$$34x - 13 + 17h$$

3.
$$-32t + 9 - 16h$$

4.
$$3h + 7$$

5. (a)
$$14x - \frac{15}{2}$$
 or $14x - 7.5$

(b)
$$(14x - 11) + 0.07$$
 or $14x - 10.93$

$$6. -\frac{1}{x(x+h)}$$

$$7. \ \frac{1}{\sqrt{x+h} + \sqrt{x}}$$

8.
$$-\frac{1}{(a+6)(a+2)}$$

9.
$$6a - 24 + 3h$$

Multiplying out the parentheses to get the function f into general form before using it to find f(a+h) and f(a) will greatly simplify the algebra in problem 9.