Transformations
Math 130 Kowvitz

Geometric Transformations of a Point

To illustrate the types of transformations that we shall consider, we shall
apply them to a curve consisting of a single point, for example the point (2,5).

Translations

The first type of transformation is called a translation or a shift, a movement
of the point a fixed distance in a specified direction. Although translations are
defined for movement along lines in all directions in the plane, for simiplicity
we shall consider only those in a horizontal or a vertical direction.

What happens if the point (2,5) moves 6 units to the right? Clearly the
new point is (8,5). That is the result of adding 6 to the first coordinate, here 2.
Similarly if it moved 9 units to the left, the new point (—7,5) would be found
by subtracting 9 from the first coordinate, here 2.
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Similarly to move up a given number of units, one adds that value to the
y-coordinate, and to move down a given number of units, one subtracts that
value from the y-coordinate. For example the point (2,5), when moved down
8 units ends up at (2, —3). See the above diagram.

Expansions and Compressions

The second type of transformation is called either an expansion or stretch,
or a compression or shrink. It is the result of multiplying the distance of the
point from a fixed line by a constant. The only fixed lines we shall consider are
z = 0 and y = 0 (the axes). Since in this case the distance of a point from the
line z = 0 is simply its first coordinate and the distance of a point from the
line y = 0 is simply its second coordinate, the case is somewhat analagous to
translation, with multiplication of the coordinate instead of addition.
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What happens if we multiply the z-coordinate of the point (2,5) by 3?7
Clearly the point moves 3 times as far as before from the line x = 0 (the y-axis)
and ends up with coordinates (6,5). That is called an expansion or a stretch.
This of it as pulling this point, and all other points on the curve being stretched,
away from the axis as one would pull a rubber band to stretch it. Since the
expansion applies to the first coordinate, the movement is in the x direction or
away from the line z = 0 (the y-axis).

Y

A multiplication factor less than 1 compresses or shrinks the distance of the
point from the relevant axis. If we multiply the z-coordinate of the point (2, 5)
by 1/5, the point moves to a position 1/5 as far from the line z = 0 (the y-
axis) and ends up with coordinates (2/5,5). Think of it as pushing this point,
and all other points on the curve being shrunk, toward the axis as one would
compress a rubber ball to shrink its size. Since the compression applies to the
first coordinate, the movement is in the z direction or toward the line x = 0
(the y-axis).

What happpens if the first coordinate of the point is multiplied by —17 That
clearly reflects the point across the line 2 = 0 (the y-axis) because it changes the
sign of the z-coordinate. Multiplying by any other negative constant will first
expand or compress the distance and then reflect the result across the relevant
axis. For example let us take the point (6,5) and multiply the z-coordinate by
—2/3. The result will be that the point is reflected across the line z = 0 and its
distance from the line z = 0 is shrunk by a factor of 2/3. The point will now
have the coordinates (—4, 5).
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Similarly if the second coordinate of a given point is multiplied by a positive
constant, the distance of that point from the line y = 0 (the z-axis) is either
stretched or shrunk according to whether the constant is greater than or less
than 1. And, if the second coordinate is multiplied by a negative constant,
the point is reflected across the line y = 0 (the z-axis) and the distance from
the z-axis stretched or shrunk according to whether the absolute value of the
constant is greater than or less than 1. For example if the constant is —7, we
must look at it as —1(7) which equals —1 times | — 7|. Then the actions of the
reflection and of the expansion or contraction can be viewed separately.
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Transformations Determined from Equations

Translations of a Point

Let us consider the equation
(z +10)* + (y — 2)* = 25.

What does its graph look like? If a point (a, b) is on its graph, then we must have
(a+10)?+(b—2)2 = 25. One way to find all the points is to try various ordered
pairs to see which ones make the equation true. However, there is a much
simpler method of graphing this equation based on the ideas of translations of
points.

If we introduce new variables v and v with v =  + 10 and v = y — 2, then
upon substitution we get

u? + v? = 25,

a familiar equation of which we readily know the graph (a circle with radius 5
and center at the origin).

Take any point (c,d) on the graph of u? + v? = 25, say (3,4). We have
32 + 42 = 25. Now look at a solution (a, b) of the original equation in z and y.
Since (a + 10)% + (b — 2)? = 25, it must be true that (a + 10,b— 2) is a point on
the graph of u2? + v? = 25.

To get from the point (a+10,b—2) to the desired point on the original graph
we merely have to subtract 10 from a+ 10 and add 2 to b— 2. The desired point
on (z +10)% + (y — 2)? = 25 is found by taking the point on u? + v? = 25 and
moving it 10 to the left and 2 up. So any point (a, b) on the graph of the original
equation can be obtained from a point on 42 +v2 = 25 by two translations. Here
is the picture. (Since z? 4+ y? = 25 has the same graph as u? + v? = 25 we may
graph u? 4+ v? = 25 as 22 +y? = 25 and locate the point (3,4) on the z,y-axes.)
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Starting with the known graph of 2 +y2 = 25, we can get the desired graph
by translating the entire graph 10 to the left and 2 up. Note that this movement
is the opposite of the directions implicitly associated with the +10 and —2 in
the original equation. y

Graph of (z + 10)%2 4+ (y — 2)2 = 25
Graph of z2 + y2 =25
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Translation of a Graph by Relocation of the Axes

An alternate theory of linear transformations involves redrawing the axes
for the new variable, keeping the original points in their places. Suppose that
the curve was drawn for the equation (z + 10)2 + (y — 2)? = 25 and then new
variables u = z + 10 and v = y — 2 were introduced. Relative to the new line
u = 0 (the v-axis), the first coordinate of any point would have to be 10 greater
than it was before. This could be accomplished by moving the vertical axis
(formerly z = 0 and now w = 0) 10 to the left. Similarly, relative to the new
line v = 0 (the w-axis), the second coordinate of any point would have to be 2
less than it was before. This could be accomplished by moving the horizontal
axis (formerly y = 0 and now v = 0) 2 up.
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Another, more useful, way of looking at the same transformation is first to
draw the graph of u? + v? = 25 on the u,v-axes and then use z = u — 10 and
y = v + 2 to relocate the coordinate axes. In this case the line x = 0 (the
y-axis) will have to be located 10 units to the right of the v-axis, and the line
y = 0 (the z-axis) will have to be located 2 units below the u-axis. Relative
to the x and y axes we now have an accurate graph of the original equation.
Compare this graph with respect to the z and y axes with the bottom graph on
the previous page. (Here because of two operations, each opposite in direction,
the movement of the axes is the same as the directions implicitly associated
with the +10 and —2 in the original equation.)
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Graph of (z +10)2 + (y — 2)2 =25
Graph of u? +v2 =25




TRANSFORMATIONS )

Effects of Expansions and Compressions on the Location of
a Point

Let us consider the equation
(3z)% + (y/2)® = 25.

What does its graph look like? If a point (a,b) is on its graph, then we must
have (3a)? + (b/2)? = 25. One way, just as before, to find all the points is to
try various ordered pairs to see which ones make the equation true. However,
there is a much simpler method of graphing the equation based on the ideas of
expansions and compressions of points.

If we introduce new variables u and v with u = 3z and v = y/2, then upon
substitution we get

u? +0v? =25,

a familiar equation of which we readily know the graph (a circle with radius 5
and center at the origin).

Take any point (c,d) on the graph of u? + v? = 25, say (3,4). We have
32 + 42 = 25. Now look at a solution (a,b) of the original equation in z and y.
Since (3a)? + (b/2)? = 25, it must be true that (3a,b/2) is a point on the graph
of u? +v? = 25.

To get from the point (3a,b/2) to the desired point on the original graph
we merely have to divide 3a by 3 and multiply b/2 by 2. The desired point
on (3z)? + (y/2)? = 25 is found by locating the point on u? + v? = 25; then
compressing its distance from the line £ = 0 (the y-axis) by a factor of 1/3
toward the y-axis and expanding its distance from the line y = 0 (the z-axis)
by a factor of 2 away from the z-axis. So, any point (a,b) on the graph of
the original equation can be obtained from a point on u? 4+ v? = 25 by one
compression and one expansion. Here is the picture. (Since z2 + 2 = 25 has
the same graph as u? +v? = 25 we may graph u? +v? = 25 as 2 + y?> = 25 and
locate the point (3,4) on the z,y-axes.)
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Starting with the known graph of z? +y2 = 25, we can get the desired graph
by first compressing the entire graph by a factor of 1/3 toward the line z = 0
(the y-axis) and then expanding the entire graph by a factor of 2 away from
the line y = 0 (the z-axis). As in the case of translations we note that this
compression or expansion is the opposite of the action apparently implied by
the 3 and 1/2 in the original equation. This graph incidentally has the form of
an ellipse.

(1,8)

(3,4)

Graph of z2 + y? =25

Graph of (3z)2 + (y/2)? = 25

Here again there is an alternate theory of expansions and compressions that
involves redrawing the scales of the axes. For example to get the graph of
(3z)% + (y/2)? = 25 one could rescale the z-axis renaming the physical position
of the former unit length with the length 1/3 and rescale the y-axis renaming
the physical position of the former unit length with the length 2. This will result
in a coordinate system which will not depict the true shapes of the curves which
we graph. Occasionally, as in trigonometry, when we are not very concerned
with a true-to-scale graph such a method will be useful. I shall leave it to you
to explore it now if you wish.

Although no examples are now given, when each occurrence of z in an equa-
tion is replaced by a certain negative multiple of z, the result is to reflect the
graph of the equation across the line = 0 (the y-axis) in addition to stretching
or shrinking it. Similarly when each occurrence of y is replaced by a certain
negative multiple of y, the result is to reflect the graph of the equation across
the line y = 0 (the z-axis) in addition to stretching or shrinking it.
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Summary of Replacement Method

Given an equation whose graph is known and a second equation exactly the
same as the first except that each occurrence of x has been replaced by z+c (c a
real constant), the second graph is exactly the same as the first except that the
first graph has been translated along the z-axis (left or right) a distance equal
to |c| but in the opposite direction. The same holds for y with the movement
being along the y-axis (up or down).

Given an equation whose graph is known and a second equation exactly the
same as the first except that each occurrence of x has been replaced by z times
k (k a non-zero constant), the second graph is exactly the same as the first
except that the first graph has been compressed or expanded horizontally, with
an action opposite to the one implied by the size of |k|. (That is, compression
when |k| > 1 and expansion when |k| < 1.) Additionally if ¥ < 0 then the graph
is reflected across the y-axis (the line = 0). The same holds for replacements
of y with the expansion or compression being vertical and the reflection, if any,
being across the z-axis (the line y = 0).

Functions
Transformations of Second Coordinate: Function Form

If one variable in the equation, usually y, is alone on the left side we say
that the equation is in function form or that it is solved for y. In such a case
we have an alternative way of looking at a transformation.

For example, take the graph of (y —2) = 22. This may be obtained from the
known graph of y = z? by moving the graph of y = 2% up 2. As we have seen
before a replacement of all occurrences of y by y — 2 produces a movement in
the opposite direction, here up 2.

If we solve the equation for y, we get y = 22 + 2. Now looking at the value 2
as a number added to the whole right side, the translation in the y direction is up
as the number 2 suggests. Do not confuse this with the replacement method. If
there was a substitution, the effect of the translation, compression, or expansion
is the opposite as would normally be expected. If there was an operation on the
entire right side, the effect is the same as one would normally expect.

Transformations of First Coordinate: f(z — h) and f(z)

We may look at f(z — h) as a the result of a composition, or chain, of two
functions. The first function is given by g(z) = z — h and the second function
is given by f(x).

The rule for f(z—h) is that g(x) = z—h and (fog)(z) = f(g9(z)) = f(z—h).
For a given value a, g takes a to a—h and then f takes a—h to f(a—h). In other
words we first subtract h from a and then apply f to the resulting number.

Now suppose (a,b) is a point in the function f. Then (a + h,b) is a point
in the function f(xz — h). The proof of that is simple. We know that b = f(a).
When a + h is substituted for 2 in f(z — h), we get f((a+ h) —h) = f(a) =b.
That means that the second coordinate for the composite function with the rule
f(z — h) is b when the first coordinate is a + h. The point on the new graph
representing the composite function is (a+h, b), which is a horizontal translation
of distance h in the opposite direction as one might initially expect by the minus
sign separating z and h. The reason for this fact is similar to the reason for the
reflected point being on the equation of the reflection. It is a compensation of
the +h for the —h resulting in the same output for the function. That is, the
inputs are different but the outputs are the same. When a constant is added to
each z, the graph is translated horizontally.

Similar arguments, omitted here, apply to the graph of f with the rule f(kz).



