f(x-h) AND f(x)

\[\int \begin{aligned} \begin{aligned} 1^{st} & \hdots \\ 2^{nd} & \hdots \end{aligned} : \text{the given for } \end{aligned} \] f(x-h) is a composite, or chain, of 2 functions: 1. The rule for f(x-h):

> (x-h) diagram: or list do 🕞 the steps:

Examples to show the composite process.

Let $f(x) = x^2 + 3x$, · a) h = 2. let compute the numbers in the table:

f(x)	×	x-h	f(x-h)	2 step
0	0	-2	-2	process
4	1	-1	-2	
10	2	0	0	•
18	3	1	4	
28	4	2	10	
40	5	3	18	•

Evaluate f(x-h) at a number called "x+h"; b) the result is f(x) because plug in

$$(x+h) \xrightarrow{(x+h)} (x+h) - h$$

$$= x \xrightarrow{(x)} f(x); \text{ or } f(x-h) \longrightarrow f((x+h)-h) = f(x)$$

$$f(x+h) \longrightarrow f((x+h)-h) = f(x)$$

The values of f(x-h) lag the values of f(x) by h, that is, a given value doesn't come out of f(x-h) until h units later-(when h > 0).

in example a) the values lag by 2, they come out 2 units later:

x	f(x)	f(x-2)
0	٥ر	. •
I	4	•
2	10	~ 0
3	18	4
4	• ·	10
5	•	18

When h < 0 the values of f(x-h)lead those of f(x) by [h] units. For ex. if h = -3 then the values of f(x+3) lead those of f(x) by 3 units.

The effect on graphs.

The graph of f(x-h) is the graph of f(x) moved -Proof. Suppose (a,b) is on the graph of f(x). Then b = f(a).

Now (a+h,b) is on the graph of f(x-h), because f((a+h)-h) = f(a) - b.

to get the same height on the graph you have to increase x by h to compensate for -h which means -