Completing the Square

This is a procedure that starts with a quadratic polynomial

$$ax^2 + bx + c$$

and ends with an expression of the form

$$a(x+h)^2+k.$$

which is algebraically equal to the starting polynomial. We say that $a(x+h)^2 + k$ is the "completed square form" of $ax^2 + bx + c$.

Completing the square is a procedure that changes the form of a quadratic polynomial. It is useful for solving quadratic equations, graphing parabolas, and other applications. The essential feature of the completed-square form is that there is no linear term, that is, no term of the form, 'number times variable.' The polynomial $ax^2 + bx + c$ has linear term bx, but completing the square removes the linear term. $a(x+h)^2 + k$ has quadratic term $a(x+h)^2$ and constant term k.

For example, we may see directly that $x^2 + 2x + 1 = (x+1)^2$; then $(x+1)^2$ is the completed square form of $x^2 + 2x + 1$, with a = 1, h = 1, k = 0. But when direct pattern recognition doesn't serve, we need a method.

Method

1. Basic operation:

Given
$$x^2 + bx$$
,
write $\left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2$.

That is, do "x plus b/2, then square, then subtract $(b/2)^2$."

The 2 expressions are algebraically equal:

$$(x + b/2)^{2} - (b/2)^{2} = x^{2} + 2x (b/2) + (b/2)^{2} - (b/2)^{2}$$
$$= x^{2} + bx.$$

The point is that what you just wrote, $(x + b/2)^2 - (b/2)^2$, is the completed square form of $x^2 + bx$ (with a = 1, b = b/2, $b = -(b/2)^2$.)

Examples. Complete the squares.

$$x^{2} + 2x = (x + \frac{2}{2})^{2} - (\frac{2}{2})^{2} = (x + 1)^{2} - 1$$
 (compare example above)

$$x^{2} + 4x = (x + \frac{4}{2})^{2} - (\frac{4}{2})^{2} = (x + 2)^{2} - 4$$

$$x^{2} - 6x = (x + \frac{(-6)}{2})^{2} - (\frac{(-6)}{2})^{2} = (x - 3)^{2} - 9$$

$$x^{2} - 5x = (x - \frac{5}{2})^{2} - \frac{25}{4}$$

2. Next, to complete the square of $x^2 + bx + c$, do the basic operation on $x^2 + bx$, and carry the c. Example. Complete the square.

$$x^{2} - 6x + 3 = [x^{2} - 6x] + 3$$
$$= [(x - 3)^{2} - 9] + 3$$
$$= (x - 3)^{2} - 6.$$

3. Finally, to complete the square of $ax^2 + bx + c$, factor a from the x terms:

$$ax^{2} + bx + c = a[x^{2} + (b/a)x] + c$$

do the basic operation inside the [], then simplify.

Examples. Complete the assorted squares.

$$x^{2} - 8x + 1 = (x - 4)^{2} - 4^{2} + 1$$

$$= (x - 4)^{2} - 15$$

$$2x^{2} - 8x + 1 = 2[x^{2} - 4x] + 1$$

$$= 2[(x - 2)^{2} - 4] + 1$$

$$= 2(x - 2)^{2} - 2 \cdot 4 + 1$$

$$= 2(x - 2)^{2} - 7$$

$$3x^{2} + 6x - 1 = 3[x^{2} + 2x] - 1$$

$$= 3[(x + 1)^{2} - 1] - 1$$

$$= 3(x + 1)^{2} - 3 - 1$$

$$= 3(x + 1)^{2} - 4$$

$$-x^{2} + 6x - 1 = -[x^{2} - 6x] - 1$$

$$= -[(x - 3)^{2} - 9] - 1$$

$$= -(x - 3)^{2} + 9 - 1$$

$$= -(x - 3)^{2} + 8$$

$$-3x^{2} + 6x - 1 = -3[x^{2} - 2x] - 1$$

$$= -3[(x - 1)^{2} - 1] - 1$$

$$= -3(x - 1)^{2} + 3 - 1$$

$$= -3(x - 1)^{2} + 2$$

$$= -3(x - 1)^{2} + 2$$

$$ax^{2} + bx + c = a \left[x^{2} + \left(\frac{b}{a} \right) x \right] + c$$
 (the general case)

$$= a \left[\left(x + \left(\frac{b}{2a} \right) \right)^{2} - \left(\frac{b}{2a} \right)^{2} \right] + c$$

$$= a \left(x + \left(\frac{b}{2a} \right) \right)^{2} - a \left(\frac{b}{2a} \right)^{2} + c$$

$$= a \left(x + \left(\frac{b}{2a} \right) \right)^{2} - \frac{b^{2}}{4a} + c$$

Practice. Complete the squares. You can always check an answer by squaring and collecting terms: you should get the original polynomial.

1.
$$x^2 + 4x + 5$$
 = $(x + 2)^2 + 1$
2. $x^2 - 4x + 5$ = $(x - 2)^2 + 1$
3. $x^2 + 7x - 3$ = $(x + \frac{7}{2})^2 - 15\frac{1}{4}$
4. $2x^2 - 4x + 5$ = $2(x - 1)^2 + 3$
5. $-x^2 - 4x + 5$ = $-(x + 2)^2 + 9$
6. $3x + 1 - x^2$ = $-(x - \frac{3}{2})^2 + \frac{31}{4}$
7. $3 + 4x - 2x^2$ = $5 - 2(x - 1)^2$