Part I — Practice Problems

Math 130 Kovitz

Lines.

- 1. Find the equation and both intercepts. Sketch the line.
 - (a) The line through (2, -8) and (-1, 10).

Ans. y = 4 - 6x

(b) The line through (-1, -2) and (4, 13).

$$y = 3x + 1$$

$$y = 2x - 1$$

- (c) The line through (2,3) and perpendicular to 3x + 6y = 1.
- 2. Find the point of intersection of the lines having equations 2x + y = 0 and x-y=-3. Sketch the lines, showing all intercepts. Ans. (-1, 2)

Circles. Determine the center and the radius of the circle with the given equation.

1.
$$x^2 + y^2 = 4x + 2y - 1$$

Ans.
$$(2,1)$$
; 2

$$2. \ x^2 + 6x + y^2 = 0$$

$$(-3,0); 3$$

3.
$$x^2 + 4y + y^2 = 2x - 2$$

$$(1,-2); \sqrt{3}$$

Odd/Even. Decide if the function with the given rule is odd, even, or neither.

1.
$$x(x^2+1)$$

2.
$$\sqrt{1-x^2}$$

3.
$$\frac{x^2}{1+x^3}$$

1.
$$x(x^2+1)$$
 2. $\sqrt{1-x^2}$ 3. $\frac{x^2}{1+x^3}$ 4. $(x^3+1)(x^3-2)$ 5. $\frac{x^3-x}{1-x^2}$

5.
$$\frac{x^3-x}{1-x^2}$$

Ans. 1. Odd 2. Even 3. Neither 4. Neither 5. Odd

Parabolas. Graph the quadratic function with the given rule: Complete the square and find the vertex and all intercepts, estimating as needed. Then sketch the function.

1.
$$f(x) = x^2 - 2x - 3$$

Vertex.
$$(1, -4)$$

2.
$$q(x) = x^2 + 2x - 2$$

$$(-1, -3)$$

3.
$$h(x) = 3 - 4x - x^2$$

$$(-2,7)$$

4.
$$k(x) = 2x - x^2$$

Max-Min.

- 1. Find the area of the largest rectangular field that 2000 feet of fencing will Ans. $250,000 \text{ ft}^2$ enclose.
- 2. A farmer makes a rectangular pen inside his barn with 40 feet of chicken wire, using a corner of the barn for two sides of the pen. Find the maximum area that he can enclose. Ans. 400 ft^2
- 3. Show that $x^2 + 6x + 10 > 0$ for all x. Ans. vertex is (-3, 1), opens upward
- 4. Find the point on the line x + 3y + 2 = 0 closest to (1, -2). Ans. (1.3, -1.1)
- 5. Show that $3-x^2-4x < 8$ for all x. Ans. vertex is (2,7), opens downward
- 6. Find the point on the line x 2y = 1 closest to (0, 2). Ans. (1,0)

7. (6,0) For each point P on the line segment joining (0,2) and (6,0), consider the rectangle with upper right corner P and bounded by the axes, as in the sketch.

Among these rectangles, find the one of largest Ans. the rectangle with P=(3,1)