Angle and Trig Ratio Problems

Math 130 Kovitz

- 1. (a) Convert to radian measure: 18° (both in terms of π and as a decimal).
 - (b) Convert to degree measure:
 - i. $\frac{\pi}{5}$ ii. 8

Both of these numbers are in radian measure.

- (c) Convert to radian measure in terms of π : 5 radians.
- 2. (a) How long is an arc associated with an angle of 42° in a circle with radius 206 feet?
 - (b) In a circle with 260-inch radius, how long is an arc associated with a central angle of 1.4 radians?
- 3. (a) In a unit circle, an arc 2.1 units long subtends a central angle of how many radians? Of how many degrees, to the nearest degree?
 - (b) In a circle with 15-cm. radius, an arc 36 cm. long subtends a central angle of how many radians? Of how many degrees, to the nearest degree?
- 4. Given arc length s=10 and $\theta=60^{\circ}$, find the radius r. (You may leave r in the form $\frac{N}{\pi}$, N an integer.)
- 5. On a turntable, an 8-in. diameter record is rotating at a rate of $33\frac{1}{3}$ revolutions per minute (rpm). Find
 - (a) the angular speed of the record and the angle swept in 3 seconds;
 - (b) the linear speed of a point on its rim and the distance traveled by the point in 3 seconds.
- 6. Find the six trigonometric ratios for angle θ .

7. Solve this triangle. (Find all sides and angles.)

It is given that $\angle A = 41^{\circ}$ and c = 100.

Use a calculator when indicated.

CONTINUED

8. Find and label any two points in the second quadrant which are on the unit circle, the graph of $u^2 + v^2 = 1$. (Note that (0,1) and (-1,0) are not in the second quadrant; they are on the axes.)

The answers may be expressed in either radical or decimal form. If possible, find two points with exact decimal values—such points are a bit more difficult to find.

- 9. The point P = (.96, -.28) is on the unit circle.
 - (a) Roughly mark it.
 - (b) Find the coordinates of its reflection
 - i. across the u-axis.
 - ii. across the v-axis.
 - iii. across the line v = u.
 - iv. through the origin.
 - (c) For each part of (b), roughly mark the reflected point on the circle, labeling it with its coordinates and with the name of the reflection from the point P.
- 10. (a) On the unit circle mark the points determined by

iii.
$$-\frac{4\pi}{3}$$

iv.
$$-\frac{\pi}{2}$$

- (b) i. Find a real number between 0 and 2π that determines point P.
 - ii. Find a real number between -2π and 0 that determines point P.
- (c) Is it a contradiction that P is determined by two different numbers?