Sine and Cosine Function Problems

Math 130 Kovitz

1. Find: $\sin \frac{\pi}{6} - \sin(-\frac{4\pi}{3}) - \cos \frac{\pi}{4} - \cos(-\frac{11\pi}{6}) - \cos(\frac{5\pi}{3}) - \sin(\frac{5\pi}{4})$

2. Carefully graph $\cos x$ for x between 0 and 6.283185307. Label all the points that are multiples of $\frac{\pi}{6}$ or $\frac{\pi}{4}$ and two additional points that are not.

Do not use the letter π in your graph, either for labeling the x-axis or for labeling points. Instead use the fact that $\pi=3.141592654$ (approximately, to nine decimal places). For example, $\cos(\frac{\pi}{3})=\frac{1}{2}$ becomes $\cos(\frac{3.141592654}{3})=\cos 1.047197551=.5$. The point on the graph is (1.047197551,.5). Also do not use radical notation. Instead write approximate decimal equivalents for all square roots. For example, $\sqrt{3}/2$ becomes 1.732050808/2=.866025404.

- 3. (a) Graph $\sin x$ and $-\cos x$, for x between 0 and 2π , on the same axes. Where do they intersect? Label the two points.
 - (b) Using the unit circle $(u,v)=(\cos s,\sin s)$, find the points where $\sin s=-\cos s$, for $0\leq s\leq 2\pi$. Label them.
 - (c) Show that the answers in parts (a) and (b) are exactly the same. Explain briefly.
- 4. By using a graph of the unit circle draw the points that have the property that $\sin s = \frac{1}{2}$.
 - (a) By looking at the graph, roughly estimate s for each such point. (Is there more than one answer to this question for each point?)
 - (b) By looking at the graph, roughly estimate the value of $\cos s$ for each such point.
 - (c) By using a graph of $\sin x$, locate some points which have the property that $\sin x = \frac{1}{2}$. By looking at the graph, roughly estimate x for at least four of those points.
- 5. (a) Sketch a graph of $\cos x$.
 - (b) Roughly label the points on the graph of $\cos x$ for which

i.
$$x = \frac{\pi}{6}$$

ii.
$$x = \frac{5\pi}{4}$$

iii.
$$x = 4.71238898$$

iv.
$$x = 2$$

- (c) By translating, sketch the graph of $y = \cos(x + \frac{\pi}{2})$.
- (d) By reflecting the graph of $\sin x$, sketch the graph of $y = -\sin x$.
- (e) How do the graphs in parts (c) and (d) compare?
- 6. (a) Graph $y = 2 + \cos x$.
 - (b) Graph $y = 3\cos 6x$ for $0 \le x \le \frac{\pi}{2}$. What is the period?
- 7. (a) Find the period

i.
$$\cos(16x)$$

ii.
$$\sin(\frac{x}{7})$$

iii.
$$\cos(6\pi x)$$

- (b) Match to the correct graph
 - i. $\cos(\frac{2x}{7})$
 - ii. $\sin(6x)$

8. By translation, graph $y = \sin(x - \frac{\pi}{3})$ for $0 \le x \le 2\pi$. Label all intercepts and the peak and the valley.