More Trig Problems

Math 130 Kovitz

1. Evaluate using a sum or difference identity

- (a) $\cos 165^{\circ}$
- (b) $\sin(x + \frac{\pi}{3})$
- (c) $\sin(x + 3.01)$
- 2. Simplify $\sin 37^{\circ} \cos 8^{\circ} + \cos 37^{\circ} \sin 8^{\circ}$.
- 3. Express $\cos(x+2) \cos(x-2)$ in terms of $\sin x$ and/or $\cos x$, and simplify.
- 4. Assume that x satisfies $\frac{\pi}{2} < x < \pi$ and that $\sin x = \frac{3}{5}$.
 - (a) Find $\sin 2x$.
 - (b) Find $\cos 2x$.
 - (c) Find $\sin \frac{1}{2}x$.
 - (d) Find $\cos \frac{1}{2}x$.
 - (e) Sketch x, 2x, and $\frac{1}{2}x$ on the unit circle.
- 5. Given that $\cos 132.843643^{\circ} \approx -.68$, approximate $\cos 66.4218215^{\circ}$ without resorting to the use of trig tables or a calculator.
- 6. Find all solutions with $0 \le x \le 2\pi$ for $\sin x = \frac{1}{2}$.
- 7. (a) Find all solutions with $0 \le x \le 2\pi$ for $\sin 2x = \cos x$.
 - (b) Graph $\sin 2x$ and $\cos x$ on the same axes and indicate on your sketch the points corresponding to the solutions in part (a).
- 8. (a) Graph $y = \arccos x$. Plot five points, labeling them with their coordinates, both in decimal form and in terms of radicals and π . For example: $(.866025403, .523598) = (\frac{\sqrt{3}}{2}, \frac{\pi}{6})$.
 - (b) Plot the points where

i.
$$x = 0$$

ii.
$$x = -\frac{1}{2}$$

iii.
$$x = \frac{\sqrt{3}}{2}$$

iv.
$$x = -.530511337$$

v.
$$x = .367013401$$

vi.
$$y = .367013401$$

- (c) By drawing on the same axes the line y = -x, determine how many points on the previous graph, $y = \arccos x$, have -x = y (that is: how many x have $-x = \arccos x$).
- 9. Simplify
 - (a) $\cos(\arccos(-.74))$
 - (b) $\arcsin(\sin 2.4)$

- 10. Find an angle between 0° and 180° , that is between 0 and π radians, whose cosine is equal to (giving the angle in both radians and degrees):
 - (a) .322265695
 - (b) -.833885822
 - (c) -.275637355
 - (d) -.416146837
- 11. A triangle has sides of lengths 5, 16, and 19 feet. Find the angle in radian measure between the two shorter sides.
- 12. A triangle has sides of lengths 4, 9, and 11 feet. Find the angle in radian measure between the two shorter sides.
- 13. Use the Law of Cosines to find side c if side a=15, side b=7, and angle C=1.047197551 radians.
- 14. Find $\angle A$.

